Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13(8):497–508. (PMID: 10.1038/nrmicro349126145732) Aguilera P, Berrios-Pasten C, et al. (2023) The green tea polyphenol epigallocatechin-gallate (EGCG) interferes with Microcin E492 amyloid formation. Molecules 28(21). Aiba H, Mizuno T (1990) Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, stimulates the transcription of the ompF and ompC genes in Escherichia coli. FEBS Lett 261(1):19–22. (PMID: 10.1016/0014-5793(90)80626-T2407554) Arluison V, Folichon M et al (2004) The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer. Eur J Biochem 271(7):1258–1265. (PMID: 10.1111/j.1432-1033.2004.04026.x15030475) Bekhit A, Fukamachi T et al (2011) The role of OmpC and OmpF in acidic resistance in Escherichia coli. Biol Pharm Bull 34(3):330–334. (PMID: 10.1248/bpb.34.33021372380) Belousov MV, Kosolapova AO, et al. (2023) OmpC and OmpF outer membrane proteins of Escherichia coli and Salmonella enterica form bona fide amyloids. Int J Mol Sci 24(21). Bloch S, Nejman-Falenczyk B et al (2014) Different expression patterns of genes from the exo-xis region of bacteriophage lambda and Shiga toxin-converting bacteriophage capital EF, Cyrillic24B following infection or prophage induction in Escherichia coli. PLoS ONE 9(10):e108233. (PMID: 10.1371/journal.pone.0108233253104024195576) Bloch S, Lewandowska N et al (2023) Bacteriophage-encoded 24B_1 molecule resembles herpesviral microRNAs and plays a crucial role in the development of both the virus and its host. PLoS ONE 18(12):e0296038. (PMID: 10.1371/journal.pone.02960383811784410732415) Brosse A, Korobeinikova A et al (2016) Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system. Nucleic Acids Res 44(20):9650–9666. (PMID: 274397135175337) Choi U, Lee CR (2019) Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front Microbiol 10:953. (PMID: 10.3389/fmicb.2019.00953311145686503746) Cikos S, Bukovska A et al (2007) Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Mol Biol 8:113. (PMID: 10.1186/1471-2199-8-113180933442235892) Coates J, Park BR, et al. (2018) Antibiotic-induced population fluctuations and stochastic clearance of bacteria. Elife 7. Cook MA and Wright GD (2022) The past, present, and future of antibiotics. Sci Transl Med 14(657): eabo7793. Dam S, Pages JM et al (2017) Dual regulation of the small RNA MicC and the quiescent porin OmpN in response to antibiotic stress in Escherichia coli. Antibiotics (Basel) 6(4):33. (PMID: 10.3390/antibiotics604003329211019) Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794(5):808–816. (PMID: 10.1016/j.bbapap.2008.11.00519100346) Dos Santos RF, Arraiano CM et al (2019) New molecular interactions broaden the functions of the RNA chaperone Hfq. Curr Genet 65(6):1313–1319. (PMID: 10.1007/s00294-019-00990-y31104083) Duval V, Foster K et al (2017) A novel regulatory cascade involving BluR, YcgZ, and Lon controls the expression of Escherichia coli OmpF porin. Front Microbiol 8:1148. (PMID: 10.3389/fmicb.2017.01148287133355491885) Fortas E, Piccirilli F, et al. (2015) New insight into the structure and function of Hfq C-terminus. Biosci Rep 35(2). Gaffke L, Kubiak K et al (2021) Differential chromosome- and plasmid-borne resistance of Escherichia coli hfq mutants to high concentrations of various antibiotics. Int J Mol Sci 22(16):8886. (PMID: 10.3390/ijms22168886344455928396180) George AM, Levy SB (1983) Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 155(2):531–540. (PMID: 10.1128/jb.155.2.531-540.19836348022217720) Gerken H, Shetty D et al (2024) Effects of pleiotropic ompR and envZ alleles of Escherichia coli on envelope stress and antibiotic sensitivity. J Bacteriol 206(6):e0017224. (PMID: 10.1128/jb.00172-2438809006) Gil-Gil T, Valverde JR et al (2023) In vivo genetic analysis of Pseudomonas aeruginosa carbon catabolic repression through the study of CrcZ pseudo-revertants shows that Crc-mediated metabolic robustness is needed for proficient bacterial virulence and antibiotic resistance. Microbiol Spectr 11(6):e0235023. (PMID: 10.1128/spectrum.02350-2337902380) Guillier M, Gottesman S et al (2006) Modulating the outer membrane with small RNAs. Genes Dev 20(17):2338–2348. (PMID: 10.1101/gad.145750616951250) Kollerova S, Jouvet L, et al. (2024) Phenotypic resistant single-cell characteristics under recurring ampicillin antibiotic exposure in Escherichia coli. mSystems 9(7): e0025624. Malabirade A, Morgado-Brajones J et al (2017) Membrane association of the bacterial riboregulator Hfq and functional perspectives. Sci Rep 7(1):10724. (PMID: 10.1038/s41598-017-11157-5288782705587644) Malabirade A, Partouche D et al (2018) Revised role for Hfq bacterial regulator on DNA topology. Sci Rep 8(1):16792. (PMID: 10.1038/s41598-018-35060-9304295206235962) Masi M, Vergalli J et al (2022) Cephalosporin translocation across enterobacterial OmpF and OmpC channels, a filter across the outer membrane. Commun Biol 5(1):1059. (PMID: 10.1038/s42003-022-04035-y361989029534850) Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656. (PMID: 10.1128/MMBR.67.4.593-656.200314665678309051) Nikaido H, Thanassi DG (1993) Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother 37(7):1393–1399. (PMID: 10.1128/AAC.37.7.13938363364187981) Olsen AS, Moller-Jensen J et al (2010) C-Terminally truncated derivatives of Escherichia coli Hfq are proficient in riboregulation. J Mol Biol 404(2):173–182. (PMID: 10.1016/j.jmb.2010.09.03820888338) Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. (PMID: 10.1093/nar/29.9.e451132888655695) Redgrave LS, Sutton SB et al (2014) Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22(8):438–445. (PMID: 10.1016/j.tim.2014.04.00724842194) Richter MF, Drown BS et al (2017) Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545(7654):299–304. (PMID: 10.1038/nature22308284898195737020) Salim NN, Faner MA et al (2012) Requirement of upstream Hfq-binding (ARN)x elements in glmS and the Hfq C-terminal region for GlmS upregulation by sRNAs GlmZ and GlmY. Nucleic Acids Res 40(16):8021–8032. (PMID: 10.1093/nar/gks392226615743439879) Sambrook J, Fritsch EF, et al. (1989) Molecular cloning: a laboratory manual 2nd edn. CSHL Press. Sonnleitner E, Pusic P et al (2020) Distinctive regulation of carbapenem susceptibility in Pseudomonas aeruginosa by Hfq. Front Microbiol 11:1001. (PMID: 10.3389/fmicb.2020.01001325284397264166) Turbant F, Esnouf E, et al. (2023) Role of the bacterial amyloid-like Hfq in fluoroquinolone fluxes. Microorganisms 12(1). Turbant F, Waeytens J, et al. (2022) Unraveling membrane perturbations caused by the bacterial riboregulator Hfq. Int J Mol Sci 23(15):. Turbant F, Wu P, et al. (2021) The amyloid region of Hfq riboregulator promotes DsrA:rpoS RNAs annealing. Biology (Basel) 10(9). Turbant F, Waeytens J et al (2023) Interactions and insertion of Escherichia coli Hfq into outer membrane vesicles as revealed by infrared and orientated circular dichroism spectroscopies. Int J Mol Sci 24(14):11424. (PMID: 10.3390/ijms2414114243751118210379585) Vecerek B, Rajkowitsch L et al (2008) The C-terminal domain of Escherichia coli Hfq is required for regulation. Nucleic Acids Res 36(1):133–143. (PMID: 10.1093/nar/gkm98518000007) Vendrell-Fernandez S, Lozano-Picazo P, et al. (2022) Conversion of the OmpF porin into a device to gather amyloids on the E. coli outer membrane. ACS Synth Biol 11(2): 655–667. Vergalli J, Atzori A et al (2020) The challenge of intracellular antibiotic accumulation, a function of fluoroquinolone influx versus bacterial efflux. Commun Biol 3(1):198. (PMID: 10.1038/s42003-020-0929-x323460587189378) Vincent HA, Henderson CA et al (2012) The low-resolution solution structure of Vibrio cholerae Hfq in complex with Qrr1 sRNA. Nucleic Acids Res 40(17):8698–8710. (PMID: 10.1093/nar/gks582227302963458539) Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9(8):578–589. (PMID: 10.1038/nrmicro2615217606224615618) Wang Y, Teng Y et al (2023) Involvement of RNA chaperone hfq in the regulation of antibiotic resistance and virulence in Shigella sonnei. Res Microbiol 174(5):104047. (PMID: 10.1016/j.resmic.2023.10404736868486) Watkins D, Arya D (2023) Models of Hfq interactions with small non-coding RNA in Gram-negative and Gram-positive bacteria. Front Cell Infect Microbiol 13:1282258. (PMID: 10.3389/fcimb.2023.12822583794247710628458) Wilusz CJ, Wilusz J (2013) Lsm proteins and Hfq: Life at the 3’ end. RNA Biol 10(4):592–601. (PMID: 10.4161/rna.23695233922473710366) Yamada J, Yamasaki S et al (2010) Impact of the RNA chaperone Hfq on multidrug resistance in Escherichia coli. J Antimicrob Chemother 65(5):853–858. (PMID: 10.1093/jac/dkq06720211861) Zhou G, Wang Q et al (2023) Outer membrane porins contribute to antimicrobial resistance in gram-negative bacteria. Microorganisms 11(7):1690. (PMID: 10.3390/microorganisms110716903751286310385648)
Contributed Indexing
Keywords: Antibiotic influx and efflux; Ciprofloxacin; Hfq; Membrane poration; OmpC and OmpF porins; Small non-coding RNA