Database |
MEDLINE |
Publication Type |
Journal Article; Review |
References |
Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48. View item. (PMID: 10.3322/caac.2176336633525) Qi J, Li M, Wang L, Hu Y, Liu W, Long Z, Zhou Z, Yin P, Zhou M (2023) National and subnational trends in cancer burden in china, 2005-20: an analysis of National mortality surveillance data. Lancet Public Health 8(12):e943–e955. View item(23)00211-6. (PMID: 10.1016/S2468-2667(23)00211-638000889) Pastushenko I, Blanpain C (2019) EMT transition States during tumor progression and metastasis. Trends Cell Biol 29(3):212–226. View item. (PMID: 10.1016/j.tcb.2018.12.00130594349) Feng R, Morine Y, Ikemoto T, Imura S, Iwahashi S, Saito Y, Shimada M (2018) Nrf2 activation drive macrophages polarization and cancer cell epithelial-mesenchymal transition during interaction. Cell Commun Signal 16(1):54. View item. (PMID: 10.1186/s12964-018-0262-x301808496122794) Gundamaraju R, Lu W, Paul MK, Jha NK, Gupta PK, Ojha S, Chattopadhyay I, Rao PV, Ghavami S (2022) Autophagy and EMT in cancer and metastasis: who controls whom? Biochim Biophys Acta Mol Basis Dis 1868(9):166431. View item. (PMID: 10.1016/j.bbadis.2022.16643135533903) Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G et al (2020) Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 21(6):341–352. View item. (PMID: 10.1038/s41580-020-0237-9323002527250738) Ros M, Sala M, Saltel F (2020) Linking matrix rigidity with EMT and Cancer invasion. Dev Cell 54(3):293–295. View item. (PMID: 10.1016/j.devcel.2020.06.03232781020) McCabe EM, Rasmussen TP (2021) LncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol 75:38–48. View item. (PMID: 10.1016/j.semcancer.2020.12.01233346133) Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C (2022) Redox signaling at the crossroads of human health and disease. MedComm (2020) 3(2):e127. View item. (PMID: 10.1002/mco2.12735386842) Hapke RY, Haake SM (2020) Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett 487:10–20. View item. (PMID: 10.1016/j.canlet.2020.05.012324704887336507) He F, Antonucci L, Karin M (2020) NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 41(4):405–416. View item. (PMID: 10.1093/carcin/bgaa039323473017298623) Ngo V, Duennwald ML (2022) Nrf2 and oxidative stress: A general overview of mechanisms and implications in human disease. Antioxid (Basel) 11(12). View item. de la Rojo M, Chapman E, Zhang DD (2018) NRF2 and the hallmarks of Cancer. Cancer Cell 34(1):21–43. View item. (PMID: 10.1016/j.ccell.2018.03.022) Lin L, Wu Q, Lu F, Lei J, Zhou Y, Liu Y, Zhu N, Yu Y, Ning Z, She T et al (2023) Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers. Front Oncol 13:1184079. View item. (PMID: 10.3389/fonc.2023.11840793781096710559910) Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 1865(5):721–733. View item. (PMID: 10.1016/j.bbamcr.2018.02.01029499228) la Torre A, Lo Vecchio F, Angelillis VS, Gravina C, D’Onofrio G, Greco A (2025) Reinforcing Nrf2 Signaling: Help in the Alzheimer’s Disease Context. Int J Mol Sci 26(3). View item. Liu T, Lv YF, Zhao JL, You QD, Jiang ZY (2021) Regulation of Nrf2 by phosphorylation: consequences for biological function and therapeutic implications. Free Radic Biol Med 168:129–141. View item. (PMID: 10.1016/j.freeradbiomed.2021.03.03433794311) Jang DE, Song J, Park JW, Yoon SH, Bae YS (2020) Protein kinase CK2 activates Nrf2 via autophagic degradation of Keap1 and activation of AMPK in human cancer cells. BMB Rep 53(5):272–277. View item. (PMID: 10.5483/BMBRep.2020.53.5.044323170877262510) Niture SK, Jain AK, Shelton PM, Jaiswal AK Src subfamily kinases regulate nuclear export and degradation of transcription factor Nrf2 to switch off Nrf2-mediated antioxidant activation of cytoprotective gene expression. J Biol Chem 2017, 292(5):2048. View item. Hayes JD, Dayalan Naidu S, Dinkova-Kostova AT (2025) Regulating Nrf2 activity: ubiquitin ligases and signaling molecules in redox homeostasis. Trends Biochem Sci 50(3):179–205. View item. (PMID: 10.1016/j.tibs.2024.12.01039875264) Cores A, Piquero M, Villacampa M, Leon R, Menendez JC (2020) NRF2 regulation processes as a source of potential drug targets against neurodegenerative diseases. Biomolecules 10(6). View item. Xiang M, Namani A, Wu S, Wang X (2014) Nrf2: Bane or blessing in cancer? J Cancer Res Clin Oncol 140(8):1251–1259. View item. (PMID: 10.1007/s00432-014-1627-124599821) Wang P, Long F, Lin H, Wang T (2022) Dietary phytochemicals targeting Nrf2 for chemoprevention in breast cancer. Food Funct 13(8):4273–4285. View item. (PMID: 10.1039/d2fo00186a35373233) Goodfellow MJ, Borcar A, Proctor JL, Greco T, Rosenthal RE, Fiskum G (2020) Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Exp Neurol 328:113247. View item. (PMID: 10.1016/j.expneurol.2020.113247320616298627637) Ham S, Choi BH, Kwak MK (2024) NRF2 signaling and amino acid metabolism in cancer. Free Radic Res 58(10):648–661. View item. (PMID: 10.1080/10715762.2024.242369039540796) Jalali A, Mahmoudi S, Larki Harchegani A, Mohammadiasl J, Ahmadzadeh A (2021) Evaluation of Nrf2, Keap1 and apoptotic pathway genes expression in acute myeloid leukemia patients. Iran J Pharm Res 20(1):398–407. View item. (PMID: 10.22037/ijpr.2019.14907.12738344009688170770) Jayakumar S, Pal D, Sandur SK (2015) Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells. Mutat Res 779:33–45. View item. (PMID: 10.1016/j.mrfmmm.2015.06.00726133502) Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E et al (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3(10):e420. View item. (PMID: 10.1371/journal.pmed.0030420170204081584412) Duan J, Zhang Y, Chen R, Liang L, Huo Y, Lu S, Zhao J, Hu C, Sun Y, Yang K et al (2023) Tumor-immune microenvironment and NRF2 associate with clinical efficacy of PD-1 Blockade combined with chemotherapy in lung squamous cell carcinoma. Cell Rep Med 4(12):101302. View item. (PMID: 10.1016/j.xcrm.2023.1013023805221510772345) Ji L, Zhang R, Chen J, Xue Q, Moghal N, Tsao MS PIDD interaction with KEAP1 as a new mutation-independent mechanism to promote NRF2 stabilization and chemoresistance in NSCLC. Sci Rep 2019, 9(1):12437. View item. Hu T, Yao Y, Yu S, Guo H, Han L, Wang W, Tian T, Hao Y, Liu Z, Nan K et al (2013) Clinicopathologic significance of CXCR4 and Nrf2 in colorectal cancer. J Biomed Res 27(4):283–290. View item. (PMID: 10.7555/JBR.27.20130069238852673721036) Ji L, Wei Y, Jiang T, Wang S (2014) Correlation of Nrf2, NQO1, MRP1, Cmyc and p53 in colorectal cancer and their relationships to clinicopathologic features and survival. Int J Clin Exp Pathol 7(3):1124–1131. (PMID: 246956903971317) Matsuoka Y, Yoshida R, Kawahara K, Sakata J, Arita H, Nkashima H, Takahashi N, Hirayama M, Nagata M, Hirosue A et al (2022) The antioxidative stress regulator Nrf2 potentiates radioresistance of oral squamous cell carcinoma accompanied with metabolic modulation. Lab Invest 102(8):896–907. View item. (PMID: 10.1038/s41374-022-00776-w354146509309095) Kitano Y, Baba Y, Nakagawa S, Miyake K, Iwatsuki M, Ishimoto T, Yamashita YI, Yoshida N, Watanabe M, Nakao M et al (2018) Nrf2 promotes oesophageal cancer cell proliferation via metabolic reprogramming and detoxification of reactive oxygen species. J Pathol 244(3):346–357. View item. (PMID: 10.1002/path.502129243822) Wamsley NT, Wilkerson EM, Guan L, LaPak KM, Schrank TP, Holmes BJ, Sprung RW, Gilmore PE, Gerndt SP, Jackson RS et al (2023) Targeted proteomic quantitation of NRF2 signaling and predictive biomarkers in HNSCC. Mol Cell Proteom 22(11):100647. View item. (PMID: 10.1016/j.mcpro.2023.100647) Kerins MJ, Ooi A (2018) A catalogue of somatic NRF2 gain-of-function mutations in cancer. Sci Rep 8(1):12846. View item. (PMID: 10.1038/s41598-018-31281-0301507146110754) Ooi A, Dykema K, Ansari A, Petillo D, Snider J, Kahnoski R, Anema J, Craig D, Carpten J, Teh BT et al (2013) CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma. Cancer Res 73(7):2044–2051. View item. (PMID: 10.1158/0008-5472.CAN-12-322723365135) Chen YM, Wei L, Lin X, Zhang WJ, Wu JF, Xue G (2017) [Expression and clinical significance of Nrf2 and ERK pathway in papillary thyroid carcinoma]. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 31(12):941–945. View item. (PMID: 10.13201/j.issn.1001-1781.2017.12.01129798417) Morris G, Gevezova M, Sarafian V, Maes M (2022) Redox regulation of the immune response. Cell Mol Immunol 19(10):1079–1101. View item. (PMID: 10.1038/s41423-022-00902-0360561489508259) Harris IS, DeNicola GM (2020) The complex interplay between antioxidants and ROS in Cancer. Trends Cell Biol 30(6):440–451. View item. (PMID: 10.1016/j.tcb.2020.03.00232303435) Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX (2021) The double-edged roles of ROS in cancer prevention and therapy. Theranostics 11(10):4839–4857. View item. (PMID: 10.7150/thno.56747337540317978298) Renaudin X (2021) Reactive oxygen species and DNA damage response in cancer. Int Rev Cell Mol Biol 364:139–161. View item. (PMID: 10.1016/bs.ircmb.2021.04.00134507782) Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C (2024) Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 9(1):149. View item. (PMID: 10.1038/s41392-024-01848-73889035011189549) Satooka H, Hara-Chikuma M (2016) Aquaporin-3 controls breast Cancer cell migration by regulating hydrogen peroxide transport and its downstream cell signaling. Mol Cell Biol 36(7):1206–1218. View item. (PMID: 10.1128/MCB.00971-15268302274800788) Su X, Shen Z, Yang Q, Sui F, Pu J, Ma J, Ma S, Yao D, Ji M, Hou P (2019) Vitamin C kills thyroid cancer cells through ROS-dependent Inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics 9(15):4461–4473. View item. (PMID: 10.7150/thno.35219312857736599666) Chatterjee R, Chatterjee J (2020) ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol 99(2–3):151073. View item. (PMID: 10.1016/j.ejcb.2020.15107332201025) Moody TW, Lee L, Ramos-Alvarez I, Jensen RT (2019) Neurotensin receptors regulate transactivation of the EGFR and HER2 in a reactive oxygen species-dependent manner. Eur J Pharmacol 865:172735. View item. (PMID: 10.1016/j.ejphar.2019.172735316141438729037) Shi D, Guo L, Sun X, Shang M, Meng D, Zhou X, Liu X, Zhao Y, Li J (2020) UTMD inhibit EMT of breast cancer through the ROS/miR-200c/ZEB1 axis. Sci Rep 10(1):6657. View item. (PMID: 10.1038/s41598-020-63653-w323130937170845) Peng Y, Wang Y, Zhou C, Mei W, Zeng C (2022) PI3K/Akt/mTOR pathway and its role in Cancer therapeutics: are we making headway?? Front Oncol 12:819128. View item. (PMID: 10.3389/fonc.2022.819128354022648987494) Liao Z, Chua D, Tan NS (2019) Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer 18(1):65. View item. (PMID: 10.1186/s12943-019-0961-y309279196441160) Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev 29(2):351–378. View item. (PMID: 10.1007/s10555-010-9225-420386957) Guiot J, Henket M, Njock MS, Moermans C, Struman I, Corhay JL, Louis R (2021) [Idiopathic pulmonary fibrosis: from biomarkers to new therapeutic areas]. Rev Med Liege 76(3):166–172. (PMID: 33682385) Elkin ER, Harris SM, Loch-Caruso R (2018) Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line. Toxicol Appl Pharmacol 338:30–42. View item. (PMID: 10.1016/j.taap.2017.11.00629129777) Meynier S, Rieux-Laucat F (2019) FAS and RAS related apoptosis defects: from autoimmunity to leukemia. Immunol Rev 287(1):50–61. View item. (PMID: 10.1111/imr.1272030565243) Minchenko OH, Tsymbal DO, Minchenko DO, Ratushna OO (2016) The role of the TNF receptors and apoptosis inducing ligands in tumor growth. Ukr Biochem J 88(5):18–37. View item. (PMID: 10.15407/ubj88.05.01829235796) Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31(2):107–125. View item. (PMID: 10.1038/s41422-020-00441-133268902) Fujii J, Imai H (2024) Oxidative metabolism as a cause of lipid peroxidation in the execution of ferroptosis. Int J Mol Sci 25(14). View item. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482(3):419–425. View item. (PMID: 10.1016/j.bbrc.2016.10.086282127255319403) Loo SY, Hirpara JL, Pandey V, Tan TZ, Yap CT, Lobie PE, Thiery JP, Goh BC, Pervaiz S, Clement MV et al (2016) Manganese superoxide dismutase expression regulates the switch between an epithelial and a Mesenchymal-Like phenotype in breast carcinoma. Antioxid Redox Signal 25(6):283–299. View item. (PMID: 10.1089/ars.2015.6524274008604991580) Xu X, Sun S, Xie F, Ma J, Tang J, He S, Bai L (2017) Advanced oxidation protein products induce epithelial-Mesenchymal transition of intestinal epithelial cells via a PKC delta-Mediated, Redox-Dependent signaling pathway. Antioxid Redox Signal 27(1):37–56. View item. (PMID: 10.1089/ars.2015.661127565419) Liu G, Li B, Qin S, Nice EC, Yang J, Yang L, Huang C (2024) Redox signaling-mediated tumor extracellular matrix remodeling: pleiotropic regulatory mechanisms. Cell Oncol (Dordr) 47(2):429–445. View item. (PMID: 10.1007/s13402-023-00884-937792154) Min WL, Wang BF, Liang BB, Zhang L, Pan JY, Huang Y, Zhao Y, Lin S, Zhao YH, Zhang SQ et al (2022) A ROS/Akt/NF-kappaB signaling cascade mediates epidermal growth Factor-Induced Epithelial-Mesenchymal transition and invasion in human breast Cancer cells. World J Oncol 13(5):289–298. View item. (PMID: 10.14740/wjon1518364061929635793) Farahzadi R, Valipour B, Fathi E, Pirmoradi S, Molavi O, Montazersaheb S, Sanaat Z (2023) Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells. Stem Cell Res Ther 14(1):342. View item. (PMID: 10.1186/s13287-023-03571-63801751010685711) Shi Y, Wang S, Yang R, Wang Z, Zhang W, Liu H, Huang Y (2022) ROS promote Hypoxia-Induced keratinocyte Epithelial-Mesenchymal transition by inducing SOX2 expression and subsequent activation of Wnt/beta-Catenin. Oxid Med Cell Longev 2022(1084006). View item. Glorieux C, Liu S, Trachootham D, Huang P (2024) Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov 23(8):583–606. View item. (PMID: 10.1038/s41573-024-00979-438982305) Yang SW, Zhang ZG, Hao YX, Zhao YL, Qian F, Shi Y, Li PA, Liu CY, Yu PW (2017) HIF-1alpha induces the epithelial-mesenchymal transition in gastric cancer stem cells through the snail pathway. Oncotarget 8(6):9535–9545. View item. (PMID: 10.18632/oncotarget.14484280768405354751) Puente-Cobacho B, Varela-Lopez A, Quiles JL, Vera-Ramirez L (2023) Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 42(1):49–85. View item. (PMID: 10.1007/s10555-022-10077-93670108910014738) Zhang Z, Qu J, Zheng C, Zhang P, Zhou W, Cui W, Mo X, Li L, Xu L, Gao J (2018) Nrf2 antioxidant pathway suppresses Numb-mediated epithelial-mesenchymal transition during pulmonary fibrosis. Cell Death Dis 9(2):83. View item. (PMID: 10.1038/s41419-017-0198-x293624325833372) Zhou W, Mo X, Cui W, Zhang Z, Li D, Li L, Xu L, Yao H, Gao J (2016) Nrf2 inhibits epithelial-mesenchymal transition by suppressing snail expression during pulmonary fibrosis. Sci Rep 6:38646. View item. (PMID: 10.1038/srep38646279821055159829) Occhiuto CJ, Moerland JA, Leal AS, Gallo KA, Liby KT (2023) The Multi-Faceted consequences of NRF2 activation throughout carcinogenesis. Mol Cells 46(3):176–186. View item. (PMID: 10.14348/molcells.2023.21913699447610070161) Jin M, Wang J, Ji X, Cao H, Zhu J, Chen Y, Yang J, Zhao Z, Ren T, Xing J (2019) MCUR1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ROS/Nrf2/Notch pathway in hepatocellular carcinoma. J Exp Clin Cancer Res 38(1):136. View item. (PMID: 10.1186/s13046-019-1135-x309099296434841) Cao X, Chen XM, Xiao WZ, Li B, Zhang B, Wu Q, Xue Q (2021) ROS–mediated hypomethylation of PRDX5 promotes STAT3 binding and activates the Nrf2 signaling pathway in NSCLC. Int J Mol Med 47(2):573–582. View item. (PMID: 10.3892/ijmm.2020.481933416106) Zhang HS, Zhang ZG, Du GY, Sun HL, Liu HY, Zhou Z, Gou XM, Wu XH, Yu XY, Huang YH (2019) Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1alpha/Notch1 axis. J Cell Mol Med 23(5):3451–3463. View item. (PMID: 10.1111/jcmm.14241308099376484400) Ji L, Moghal N, Zou X, Fang Y, Hu S, Wang Y, Tsao MS (2023) The NRF2 antagonist ML385 inhibits PI3K-mTOR signaling and growth of lung squamous cell carcinoma cells. Cancer Med 12(5):5688–5702. View item. (PMID: 10.1002/cam4.531136305267) Deng Y, Zhang Q, Li Y, Wang L, Yang S, Chen X, Gan C, He F, Ye T, Yin W (2020) Pectolinarigenin inhibits cell viability, migration and invasion and induces apoptosis via a ROS-mitochondrial apoptotic pathway in melanoma cells. Oncol Lett 20(4):116. View item. (PMID: 10.3892/ol.2020.11977328639297448562) Guo Y, Zheng Z, Zhang G, Zhong J, Fan X, Li C, Zhu S, Cao R, Fu K (2024) Berberine inhibits LPS-induced epithelial-mesenchymal transformation by activating the Nrf2 signalling pathway in bovine endometrial epithelial cells. Int Immunopharmacol 143(Pt 1):113346. View item. (PMID: 10.1016/j.intimp.2024.11334639393271) Liu C, Deng J, Wang S, Ren L (2023) Hypoxia promotes epithelial-mesenchymal transition in lung cancer cells via regulating the NRF2/miR–27a/BUB1 pathway. Clin Transl Oncol 25(2):510–522. View item. (PMID: 10.1007/s12094-022-02965-x36309619) Ko E, Kim D, Min DW, Kwon SH, Lee JY (2021) Nrf2 regulates cell motility through RhoA-ROCK1 signalling in non-small-cell lung cancer cells. Sci Rep 11(1):1247. View item. (PMID: 10.1038/s41598-021-81021-0334419417806835) Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K (2020) Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10(2). View item. Nakamura H, Takada K (2021) Reactive oxygen species in cancer: current findings and future directions. Cancer Sci 112(10):3945–3952. View item. (PMID: 10.1111/cas.15068342868818486193) Sanchez-Ortega M, Carrera AC, Garrido A (2021) Role of NRF2 in lung Cancer. Cells 10(8). View item. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1(1):45–49. View item. (PMID: 10.1016/j.redox.2012.10.001240241363757665) Sriramajayam K, Peng D, Lu H, Zhou S, Bhat N, McDonald OG, Que J, Zaika A, El-Rifai W (2021) Activation of NRF2 by APE1/REF1 is redox-dependent in barrett’s related esophageal adenocarcinoma cells. Redox Biol 43:101970. View item. (PMID: 10.1016/j.redox.2021.101970338876088082268) Ichimura Y, Komatsu M (2018) Activation of p62/SQSTM1-Keap1-Nuclear factor erythroid 2-Related factor 2 pathway in Cancer. Front Oncol 8:210. View item. (PMID: 10.3389/fonc.2018.00210299309145999793) Marhenke S, Lamle J, Buitrago-Molina LE, Canon JM, Geffers R, Finegold M, Sporn M, Yamamoto M, Manns MP, Grompe M et al (2008) Activation of nuclear factor E2-related factor 2 in hereditary tyrosinemia type 1 and its role in survival and tumor development. Hepatology 48(2):487–496. View item. (PMID: 10.1002/hep.2239118666252) Harder B, Jiang T, Wu T, Tao S, Rojo de la Vega M, Tian W, Chapman E, Zhang DD (2015) Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans 43(4):680–686. View item. (PMID: 10.1042/BST20150020265517124613518) Bottoni L, Minetti A, Realini G, Pio E, Giustarini D, Rossi R, Rocchio C, Franci L, Salvini L, Catona O et al (2024) NRF2 activation by cysteine as a survival mechanism for triple-negative breast cancer cells. Oncogene 43(22):1701–1713. View item. (PMID: 10.1038/s41388-024-03025-03860016511136656) Liu W, Zhao Y, Wang G, Feng S, Ge X, Ye W, Wang Z, Zhu Y, Cai W, Bai J et al (2022) TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ros/ampk/mtor/autophagy signaling. Redox Biol 53:102344. View item. (PMID: 10.1016/j.redox.2022.102344356360159144049) Hui Q, Yang N, Xiong C, Zhou S, Zhou X, Jin Q, Xu X (2024) Isorhamnetin suppresses the epithelial-mesenchymal transition of the retinal pigment epithelium both in vivo and in vitro through Nrf2-dependent AKT/GSK-3beta pathway. Exp Eye Res 240:109823. View item. (PMID: 10.1016/j.exer.2024.10982338331017) Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L, Nimmagadda S, Sudini K, Brimacombe KR, Gajghate S et al (2016) Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-Deficient NSCLC tumors. ACS Chem Biol 11(11):3214–3225. View item. (PMID: 10.1021/acschembio.6b00651275523395367156) Jeong EJ, Choi JJ, Lee SY, Kim YS (2024) The effects of ML385 on head and neck squamous cell carcinoma: implications for NRF2 Inhibition as a therapeutic strategy. Int J Mol Sci 25(13). View item. Dong Y, Kang H, Peng R, Liu Z, Liao F, Hu SA, Ding W, Wang P, Yang P, Zhu M et al (2024) A clinical-stage Nrf2 activator suppresses osteoclast differentiation via the iron-ornithine axis. Cell Metab 36(8):1679–1695e. View item. (PMID: 10.1016/j.cmet.2024.03.00538569557) Dinkova-Kostova AT, Copple IM (2023) Advances and challenges in therapeutic targeting of NRF2. Trends Pharmacol Sci 44(3):137–149. View item. (PMID: 10.1016/j.tips.2022.12.00336628798) Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA (2021) Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. Cancer Drug Resist 4(1):96–124. View item. (PMID: 10.20517/cdr.2020.71355820069019181) Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB (2012) Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 16(11):1295–1322. View item. (PMID: 10.1089/ars.2011.4414221171373324815) |
Contributed Indexing |
Keywords: Cancer stem cells; Epithelial-mesenchymal transition (EMT); Nrf2; Oxidative stress; ROS |
DOI |
10.1007/s11033-025-10731-9 |
PMID |
40549063 |
|