Loading…
Report
MALT Diffusion: Memory-Augmented Latent Transformers for Any-Length Video Generation
Yu, Sihyun, Hahn, Meera, Kondratyuk, Dan, Shin, Jinwoo, Gupta, Agrim, Lezama, José, Essa, Irfan, Ross, David, Huang, Jonathan
Saved in:
Title | MALT Diffusion: Memory-Augmented Latent Transformers for Any-Length Video Generation |
---|---|
Authors | Yu, Sihyun, Hahn, Meera, Kondratyuk, Dan, Shin, Jinwoo, Gupta, Agrim, Lezama, José, Essa, Irfan, Ross, David, Huang, Jonathan |
Publication Year |
2025
|
Description |
Diffusion models are successful for synthesizing high-quality videos but are limited to generating short clips (e.g., 2-10 seconds). Synthesizing sustained footage (e.g. over minutes) still remains an open research question. In this paper, we propose MALT Diffusion (using Memory-Augmented Latent Transformers), a new diffusion model specialized for long video generation. MALT Diffusion (or just MALT) handles long videos by subdividing them into short segments and doing segment-level autoregressive generation. To achieve this, we first propose recurrent attention layers that encode multiple segments into a compact memory latent vector; by maintaining this memory vector over time, MALT is able to condition on it and continuously generate new footage based on a long temporal context. We also present several training techniques that enable the model to generate frames over a long horizon with consistent quality and minimal degradation. We validate the effectiveness of MALT through experiments on long video benchmarks. We first perform extensive analysis of MALT in long-contextual understanding capability and stability using popular long video benchmarks. For example, MALT achieves an FVD score of 220.4 on 128-frame video generation on UCF-101, outperforming the previous state-of-the-art of 648.4. Finally, we explore MALT's capabilities in a text-to-video generation setting and show that it can produce long videos compared with recent techniques for long text-to-video generation.
Comment: preprint. 26 pages |
Document Type |
Working Paper
|
Subject Terms |