The NEXT collaboration is dedicated to the study of double beta decays of $^{136}$Xe using a high-pressure gas electroluminescent time proje
The NEXT collaboration is dedicated to the study of double beta decays of $^{136}$Xe using a high-pressure gas electroluminescent time projection chamber. This advanced technology combines exceptional energy resolution ($\leq 1\%$ FWHM at the $Q_{\beta\beta}$ value of the neutrinoless double beta decay) and powerful topological event discrimination. Building on the achievements of the NEXT-White detector, the NEXT-100 detector started taking data at the Laboratorio Subterr\'aneo de Canfranc (LSC) in May of 2024. Designed to operate with xenon gas at 13.5 bar, NEXT-100 consists of a time projection chamber where the energy and the spatial pattern of the ionising particles in the detector are precisely retrieved using two sensor planes (one with photo-multiplier tubes and the other with silicon photo-multipliers). In this paper, we provide a detailed description of the NEXT-100 detector, describe its assembly, present the current estimation of the radiopurity budget, and report the results of the commissioning run, including an assessment of the detector stability.