The emergence of Multimodal Large Language Models (MLLMs) that integrate vision and language modalities has unlocked new potentials for scie
The emergence of Multimodal Large Language Models (MLLMs) that integrate vision and language modalities has unlocked new potentials for scientific reasoning, outperforming prior benchmarks in both natural language and coding domains. Current materials science evaluation datasets such as MaScQA and SciQA remain largely text-based and fail to capture the visual and research-level analytic complexity required in materials discovery and design. We introduce MatVQA, a scalable benchmark specifically designed to address this gap. Generated via an automated pipeline, MArxivAgent, from recent materials literature, MatVQA features 1325 questions across four critical structure-property-performance (SPP) reasoning tasks. Uniquely, MatVQA employs an iterative process to eliminate textual shortcuts, compelling MLLMs to perform fine-grained, low-level visual analysis of material imagery (e.g., microscopy, diffraction patterns) integrated with multi-step scientific reasoning. Benchmarking 17 open- and closed-source MLLMs on MatVQA reveals substantial gaps in current multimodal reasoning capabilities. MatVQA benchmark data, along with evaluation code, is publicly available in \href{View item}{View item} to catalyze further research in applying MLLMs to complex materials science problems.