Climate warming is accelerating the degradation of permafrost, particularly in mid- to low-latitude regions, resulting in the widespread for
Climate warming is accelerating the degradation of permafrost, particularly in mid- to low-latitude regions, resulting in the widespread formation of thermokarst landscapes, including retrogressive thaw slumps (RTSs). These landforms, which are predominantly formed by the thawing of ice-rich permafrost, have been shown to impact topography, hydrology, and ecosystem dynamics. However, spatiotemporal changes in RTS distribution and development in mid- to low-latitude permafrost regions are not well understood. This study investigates RTS spatiotemporal dynamics in the Heshenling area of the western Qilian Mountains using multi-temporal PlanetScope and Google Earth imagery, along with Sentinel-1 InSAR data acquired from 2014 to 2023. The results reveal 20 RTSs, averaging 3.7 ha in area, primarily distributed on slopes of 7–23° and at elevations of 3455–3651 m a.s.l. The deformation rates of RTSs ranged from −54 to 27 mm/year. Three developmental stages—active, stable, and mature—were identified through analysis of surface deformation and geometric variations. Active RTSs exhibited accelerated headscarp retreat and debris tongue expansion, with some slumps expanding by up to 35%. This study highlights high temperatures and rainfall as potential factors contributing to the accelerated development of RTS in arid alpine environments, and suggests that RTS activity is likely to accelerate with continued climate change.