Abstract Charge density waves, manifestations of strongly correlated electronic states in low-dimensional materials, exhibit collective quan
Abstract Charge density waves, manifestations of strongly correlated electronic states in low-dimensional materials, exhibit collective quantum phenomena that enable phase-coherent electronic manipulation. Conventional approaches face limitations in integrating sensing and computing functions, particularly at terahertz frequencies where traditional semiconductors struggle. We achieve deterministic switching between resistive and dissipationless states in 1T-TaS2 through synergistic thermal, electrical, and optical modulation of metastable charge-density-wave configurations. The resulting photoconversion mechanism delivers 5.49 A/W responsivity with 1.7 μs response time at 0.29 THz. Resonant terahertz excitation couples to collective modes, triggering lattice distortion via nonlinear phononic interactions that collectively reduce phase transition barriers in pre-biased devices. Thermally mediated state retention enables reconfigurable integration of sensing, logic, and memory functions, while phase stability under multi-field control demonstrates the feasibility of a terahertz optoelectronic platform for secure communications and programmable computing with in-memory processing capabilities.