Understanding wind pressure distribution on structures is crucial for evaluating design wind loads, especially for complex designs. This stu
Understanding wind pressure distribution on structures is crucial for evaluating design wind loads, especially for complex designs. This study investigated the wind pressure distribution on a windmill shape building with intricate geometries, i.e., the Chengdu Future Science and Technology City Exhibition Centre. Both wind tunnel test and CFD simulations are conducted to analyze the wind pressure distribution on building surface. Since the research object has intricate geometries, featuring sharp corners, curved surfaces, and ridges, the Reynolds Average Navier-Stokes (RANS) method adopting k-ε turbulence models is employed in the CFD simulations. Furthermore, scalable wall functions and non-structured grids with appropriate refinement on both turbulent regions and structural surfaces are also adopted in the RANS method. A comparison between the simulation results and wind tunnel tests demonstrated that the numerical simulations based on RANS method effectively capture surface wind pressure distribution on complex structures. This study reveals the occurrence of complicated flow phenomena that lead to a very complex wind pressure distribution on the surface of the structure, and drastic variance of the wind pressure coefficient is observed. Moreover, it is found that wind pressure distribution on the surface of the structure is highly sensitive to wind angle, exhibiting extreme negative pressure coefficients of −1.1, −1.0, and −1.8 at angles of 0°, 30°, and 60°, respectively. The analysis of the flow field around the structure at various wind angles reveals that its complex shape significantly alters the flow dynamics, creating distinct vortices and wake patterns at different angles. Consequently, CFD simulations help to understand wind loads on structures and improve wind resistance design.