In clinical practice, the glomerular filtration rate (GFR), a measurement of kidney functioning, is normally calculated using equations, suc
In clinical practice, the glomerular filtration rate (GFR), a measurement of kidney functioning, is normally calculated using equations, such as the European Kidney Function Consortium (EKFC) equation. Despite being the most general equation, EKFC, just like previously proposed approaches, can still struggle to achieve satisfactory performance, limiting its clinical applicability. As a possible solution, recently machine learning (ML) has been investigated to improve GFR prediction, nonetheless the literature still lacks a general and multi-center study. Using a dataset with 19,629 patients from 13 cohorts, we investigate if ML can improve GFR prediction in comparison to EKFC. More specifically, we compare diverse ML methods, which were allowed to use age, sex, serum creatinine, cystatin C, height, weight and BMI as features, in internal and external cohorts against EKFC. The results show that the most performing ML method, random forest (RF), and EKFC are very competitive where RF and EKFC achieved respectively P10 and P30 values of 0.45 (95% CI 0.44;0.46) and 0.89 (95% CI 0.88;0.90), whereas EKFC yielded 0.44 (95% CI 0.43; 0.44) and 0.89 (95% CI 0.88; 0.90), considering the entire cohort. Small differences were, however, observed in patients younger than 12 years where RF slightly outperformed EKFC.
Lund University, Lund University School of Economics and Management, LUSEM, Centre for Economic Demography, Lunds universitet, Ekonomihögskolan, Centrum för ekonomisk demografi, Originator, Lund University, Faculty of Medicine, Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, EPI@LUND, Lunds universitet, Medicinska fakulteten, Institutionen för laboratoriemedicin, Avdelningen för arbets- och miljömedicin, EPI@LUND, Originator, Lund University, Faculty of Medicine, Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lunds universitet, Medicinska fakulteten, Institutionen för laboratoriemedicin, Avdelningen för arbets- och miljömedicin, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), EpiHealth: Epidemiology for Health, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), EpiHealth: Epidemiology for Health, Originator, Lund University, Faculty of Medicine, Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Cystatin C, renal disease, amyloidosis and antibiotics, Lunds universitet, Medicinska fakulteten, Institutionen för laboratoriemedicin, Avdelningen för klinisk kemi och farmakologi, Cystatin C, njursjukdom, amyloidos och antibiotika, Originator, Lund University, Faculty of Medicine, Department of Translational Medicine, Radiology Diagnostics, Malmö, Lunds universitet, Medicinska fakulteten, Institutionen för translationell medicin, Diagnostisk radiologi, Malmö, Originator, Lund University, Profile areas and other strong research environments, Other Strong Research Environments, LUCC: Lund University Cancer Centre, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Övriga starka forskningsmiljöer, LUCC: Lunds universitets cancercentrum, Originator