Geoscientific Model Development Predict with Confidence: Application of a Bayesian-Based Assimilation Framework to Optimise Wetland CH4 Emis
Geoscientific Model Development Predict with Confidence: Application of a Bayesian-Based Assimilation Framework to Optimise Wetland CH4 Emissions from a Terrestrial Ecosystem. 17(6):2299-2324
The processes responsible for methane (CH4) emissions from boreal wetlands are complex; hence, their model representation is complicated by
The processes responsible for methane (CH4) emissions from boreal wetlands are complex; hence, their model representation is complicated by a large number of parameters and parameter uncertainties. The arctic-enabled dynamic global vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) is one such model that allows quantification and understanding of the natural wetland CH4 fluxes at various scales, ranging from local to regional and global, but with several uncertainties. The model contains detailed descriptions of the CH4 production, oxidation, and transport controlled by several process parameters. Complexities in the underlying environmental processes, warming-driven alternative paths of meteorological phenomena, and changes in hydrological and vegetation conditions highlight the need for a calibrated and optimised version of LPJ-GUESS. In this study, we formulated the parameter calibration as a Bayesian problem, using knowledge of reasonable parameters values as priors. We then used an adaptive Metropolis-Hastings (MH)-based Markov chain Monte Carlo (MCMC) algorithm to improve predictions of CH4 emission by LPJ-GUESS and to quantify uncertainties. Application of this method on uncertain parameters allows for a greater search of their posterior distribution, leading to a more complete characterisation of the posterior distribution with a reduced risk of the sample impoverishment that can occur when using other optimisation methods. For assimilation, the analysis used flux measurement data gathered during the period from 2005 to 2014 from the Siikaneva wetlands in Southern Finland with an estimation of measurement uncertainties. The data are used to constrain the processes behind the CH4 dynamics, and the posterior covariance structures are used to explain how the parameters and the processes are related. To further support the conclusions, the CH4 flux and the other component fluxes associated with the flux are examined. The results demonstrate the robustness of MCMC methods to quantitatively assess the interrelationship between objective function choices, parameter identifiability, and data support. The experiment using real observations from Siikaneva resulted in a reduction in the root-mean-square error (RMSE), from 0.044 to 0.023 gC m-2 d-1, and a 93.89 % reduction in the cost function value. As a part of this work, knowledge about how CH4 data can constrain the parameters and processes is derived. Although the optimisation is performed based on a single site's flux data from Siikaneva, the algorithm is useful for larger-scale multi-site studies for a more robust calibration of LPJ-GUESS and similar models, and the results can highlight where model improvements are needed.
Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), MERGE: ModElling the Regional and Global Earth system, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), MERGE: ModElling the Regional and Global Earth system, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), BECC: Biodiversity and Ecosystem services in a Changing Climate, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), BECC: Biodiversity and Ecosystem services in a Changing Climate, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), eSSENCE: The e-Science Collaboration, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), eSSENCE: The e-Science Collaboration, Originator, Lund University, Faculty of Science, Dept of Physical Geography and Ecosystem Science, Lunds universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och ekosystemvetenskap, Originator, Lund University, Faculty of Science, Centre for Mathematical Sciences, Mathematical Statistics, Lunds universitet, Naturvetenskapliga fakulteten, Matematikcentrum, Matematisk statistik, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Nature-based future solutions, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturbaserade framtidslösningar, Originator, Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Originator