We incorporated a comprehensive dataset encompassing recent measurements from satellites such as the Macau Science Satgellite-1 (MSS-1), Swa
We incorporated a comprehensive dataset encompassing recent measurements from satellites such as the Macau Science Satgellite-1 (MSS-1), Swarm, and CHAMP, as well as aero and ocean magnetic measurements, alongside ground-based data from 1936 to 2000. This amalgamation is the basis for constructing a lithospheric magnetic field model of the Chinese mainland, employing the three-dimensional Surface Spline (3DSS) model. Additionally, we used the World Digital Magnetic Anomaly Map (WDMAM)-2.1 and CHAOS-7.13 models to address data gaps horizontally and vertically. To evaluate the efficacy of the new model, we compared it not only with established models such as SHA1050, NGDC720, and LCS-1 but also with the new model excluding the MSS-1 data. The results show a high agreement between the 3DSS model and other global models at a spatial resolution of 0.05°. Furthermore, we inspected the rapid variations in the magnetic field with increasing altitude, demonstrating a smooth transition across the altitudes covered by the three satellites. Error analyses reflected the importance of MSS-1 data, which contributed notably to modelling by capturing finer-scale magnetic structures. The increased data availability correlated positively with the model's accuracy, as evidenced by the Root Mean Square Error (RMSE), registering an optimal value of 0.02 nT. The new model reveals additional geological details in southern Tibet, northeastern Inner Mongolia, and the adjacent areas of Liaoning and Jilin provinces, which are not discernible in other global models. The relationship between these anomalies and heat flow in northeastern China appears less evident, suggesting a complex interplay of orogenic processes and surface mineralogy in shaping these magnetic signatures. [ABSTRACT FROM AUTHOR]
Copyright of Remote Sensing is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv w
Copyright of Remote Sensing is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)