Practitioners and academics have long appreciated the benefits of covariate balancing when they conduct randomized experiments. For web-faci
Practitioners and academics have long appreciated the benefits of covariate balancing when they conduct randomized experiments. For web-facing firms running online A/B tests, however, it still remains challenging in balancing covariate information when experimental subjects arrive sequentially. In this paper, we study an online experimental design problem, which we refer to as the online blocking problem. In this problem, experimental subjects with heterogeneous covariate information arrive sequentially and must be immediately assigned into either the control or the treated group. The objective is to minimize the total discrepancy, which is defined as the minimum weight perfect matching between the two groups. To solve this problem, we propose a randomized design of experiment, which we refer to as the pigeonhole design. The pigeonhole design first partitions the covariate space into smaller spaces, which we refer to as pigeonholes, and then, when the experimental subjects arrive at each pigeonhole, balances the number of control and treated subjects for each pigeonhole. We analyze the theoretical performance of the pigeonhole design and show its effectiveness by comparing against two well-known benchmark designs: the matched-pair design and the completely randomized design. We identify scenarios when the pigeonhole design demonstrates more benefits over the benchmark design. To conclude, we conduct extensive simulations using Yahoo! data to show a 10.2% reduction in variance if we use the pigeonhole design to estimate the average treatment effect. This paper was accepted by George Shanthikumar, data science. Supplemental Material: The online appendix and data files are available at Visa. [ABSTRACT FROM AUTHOR]
Copyright of Management Science is the property of INFORMS: Institute for Operations Research & the Management Sciences and its content may
Copyright of Management Science is the property of INFORMS: Institute for Operations Research & the Management Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)