Författarna: |
Li J; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China., Guo H; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China. tggh635@163.com.; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China. tggh635@163.com.; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310014, China. tggh635@163.com., Ji W; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China., Chen H; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China., Zhao F; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China., Yang W; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China., Guo L; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China., Qian J; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China. |
Språk: |
English |
References: |
Kilimnik A, Dembitsky V (2016) Anti-melanoma agents Derived from Fungal species. Mathews J Case Rep 1:002. Chang T-S (2009) An updated review of tyrosinase inhibitors. IJMS 10:2440–2475. Visa. (PMID: 10.3390/ijms10062440195822132705500) Pillaiyar T, Manickam M, Namasivayam V (2017) Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 32:403–425. Visa. (PMID: 10.1080/14756366.2016.1256882280979016010116) Simon DK, Tanner CM, Brundin P (2020) Parkinson Disease Epidemiology, Pathology, Genetics, and pathophysiology. Clin Geriatr Med 36:1–12. Visa. (PMID: 10.1016/j.cger.2019.08.00231733690) Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation Recent Advances – DOAJ. Visa . Accessed 20 Jan 2024. Chiocchio I, Mandrone M, Sanna C et al (2018) Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind Crops Prod 122:498–505. Visa. (PMID: 10.1016/j.indcrop.2018.06.029) The Comparison of Total Phenolics, Antioxidant T and Anti-Tyrosinase Activities of Korean Sargassum Species. Visa/ . Accessed 20 Jan 2024. Li Y-Y, Kang P, Wang S-Q et al (2021) Ag nanoparticles anchored onto porous CuO nanobelts for the ultrasensitive electrochemical detection of dopamine in human serum. Sens Actuators B 327:128878. Visa. (PMID: 10.1016/j.snb.2020.128878) Yildiz HB, Freeman R, Gill R, Willner I (2008) Electrochemical, Photoelectrochemical, and Piezoelectric Analysis of tyrosinase activity by Functionalized Nanoparticles. Anal Chem 80:2811–2816. Visa. (PMID: 10.1021/ac702401v18324837) Li S, Mao L, Tian Y et al (2012) Spectrophotometric detection of tyrosinase activity based on boronic acid-functionalized gold nanoparticles. Analyst 137:823–825. Visa. (PMID: 10.1039/C2AN16085D22214938) Xu Q, Yoon J (2011) Visual detection of dopamine and monitoring tyrosinase activity using a pyrocatechol violet–Sn4 + complex. Chem Commun 47:12497–12499. Visa. (PMID: 10.1039/C1CC15587C) Yan K, Ji W, Zhu Y et al (2019) Photofuel cell coupling with redox cycling as a highly sensitive and selective self-powered sensing platform for the detection of tyrosinase activity. Chem Commun (Camb) 55:12040–12043. Visa. (PMID: 10.1039/c9cc05649a31531449) Chen Q, Zheng L, Deng X et al (2023) A fluorescence biosensor for tyrosinase activity analysis based on silicon-doped carbon quantum dots. Chem Pharm Bull (Tokyo). Visa. (PMID: 10.1248/cpb.c23-0041038044138) Kong X, Gong Y, Fan Z (2016) The sensitive Turn-On fluorescence detection of ascorbic acid based on Iron(III)-Modulated Nitrogen-Doped Graphene Quantum dots. J Fluoresc 26:1755–1762. Visa. (PMID: 10.1007/s10895-016-1867-327357393) Wang D, Wang P, Liu D, Zhou Z (2019) Fluorometric atrazine assay based on the use of nitrogen-doped graphene quantum dots and on inhibition of the activity of tyrosinase. Microchim Acta 186:527. Visa. (PMID: 10.1007/s00604-019-3648-6) Fletcher AN (1969) Quinine sulfate as a fluorescence Quantum Yield Standard. Photochem Photobiol 9:439–444. Visa. (PMID: 10.1111/j.1751-1097.1969.tb07311.x5771430) Ashooriha M, Khoshneviszadeh M, Khoshneviszadeh M et al (2020) Kojic acid–natural product conjugates as mushroom tyrosinase inhibitors. Eur J Med Chem 201:112480. Visa. (PMID: 10.1016/j.ejmech.2020.11248032652434) Liu Y, Tang X, Deng M et al (2019) Nitrogen doped graphene quantum dots as a fluorescent probe for mercury(II) ions. Microchim Acta 186:140. Visa. (PMID: 10.1007/s00604-019-3249-4) Chen S, Song Y, Li Y et al (2015) A facile photoluminescence modulated nanosensor based on nitrogen-doped graphene quantum dots for sulfite detection. New J Chem 39:8114–8120. Visa. (PMID: 10.1039/C5NJ01353D) Wang D, Wang P, Liu D, Zhou Z (2019) Fluorometric atrazine assay based on the use of nitrogen-doped graphene quantum dots and on inhibition of the activity of tyrosinase. Mikrochim Acta 186:527. Visa. (PMID: 10.1007/s00604-019-3648-631297616) Liu J-J, Chen Z-T, Tang D-S et al (2015) Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid. Sens Actuators B 212:214–219. Visa. (PMID: 10.1016/j.snb.2015.02.019) Huang S, Qiu H, Zhu F et al (2015) Graphene quantum dots as on-off-on fluorescent probes for chromium(VI) and ascorbic acid. Mikrochimica acta (1966) 182:1723–1731. Visa. Qiu L, Gao M, Li J et al (2024) Fluorometric assay of tyrosinase and atrazine based on the Use of Carbon dots and the inhibition of tyrosinase activity. J Fluoresc 34:765–774. Visa. (PMID: 10.1007/s10895-023-03308-x37358758) Ma X, Gao W, Halawa MI et al (2019) Lucigenin fluorescent assay of tyrosinase activity and its inhibitor screening. Sens Actuators B 280:41–45. Visa. (PMID: 10.1016/j.snb.2018.10.044) Qu Z, Na W, Liu X et al (2018) A novel fluorescence biosensor for sensitivity detection of tyrosinase and acid phosphatase based on nitrogen-doped graphene quantum dots. Anal Chim Acta 997:52–59. Visa. (PMID: 10.1016/j.aca.2017.10.01029149994) Teng Y, Jia X, Li J, Wang E (2015) Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal Chem 87:4897–4902. Visa. (PMID: 10.1021/acs.analchem.5b0046825846058) Wang S, Han B, Chen M et al (2023) Construction of bifunctional carbon dots based fluorescent/colorimetric/smartphone-assisted multi-signal strategy for monitoring alkaline phosphatase activity. Mater Design 232:112172. Visa. (PMID: 10.1016/j.matdes.2023.112172) Wang M, He L, Zheng X et al (2024) Simultaneous and rapid determination of lomefloxacin and chlortetracycline hydrochloride residues in meat foods by Al3 + sensitized synchronous fluorescence spectrometry. J Food Compos Anal 127:105969. Visa. (PMID: 10.1016/j.jfca.2024.105969) Chen C, Pang L, Wang R et al (2021) Fluorescence copolymer-based dual-signal monitoring tyrosinase activity and its inhibitor screening via blue-green emission transformation. Spectrochim Acta Part A Mol Biomol Spectrosc 246:119028. Visa. (PMID: 10.1016/j.saa.2020.119028) Li MX, Kang KW, Huang M et al (2023) Simple and rapid detection of tyrosinase activity with the adjustable light scattering properties of CoOOH nanoflakes. Anal Bioanal Chem 415:4569–4578. Visa. (PMID: 10.1007/s00216-023-04710-x37171584) Liu G, Zhao J, Lu S et al (2018) Polymethyldopa nanoparticles-based fluorescent sensor for detection of tyrosinase activity. ACS Sens 3:1855–1862. Visa. (PMID: 10.1021/acssensors.8b0068430149701) Li Y, Deng B, Yang S et al (2021) A colorimetric fluorescent probe for the detection of tyrosinase and its application for the food industry. J Photochem Photobiol A 419:113458. Visa. (PMID: 10.1016/j.jphotochem.2021.113458) Ao H, Qian Z, Zhu Y et al (2016) A fluorometric biosensor based on functional Au/Ag nanoclusters for real-time monitoring of tyrosinase activity. Biosens Bioelectron 86:542–547. Visa. (PMID: 10.1016/j.bios.2016.07.05127448544) Li Y, Deng B, Yang S et al (2021) A fluorescent probe for the visible colorimetric detection of tyrosinase. ChemistrySelect 6:9046–9051. Visa. (PMID: 10.1002/slct.202102473) Wang M, Xie J-L, Li J et al (2020) 3-Aminophenyl Boronic Acid Functionalized Quantum-dot-based ratiometric fluorescence Sensor for the highly sensitive detection of tyrosinase activity. ACS Sens 5:1634–1640. Visa. (PMID: 10.1021/acssensors.0c0012232486639) |
Contributed Indexing: |
Keywords: Fluorescence probe; Inhibitor; Nitrogen-doped graphene quantum dots; Tyrosinase |
Substance Nomenclature: |
EC 1.14.18.1 (Monophenol Monooxygenase) 0 (Enzyme Inhibitors) 7782-42-5 (Graphite) 0 (Fluorescent Dyes) N762921K75 (Nitrogen) |
PMID: |
38874823 |
|