Authors: |
Li Y; Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China., Zhu W; Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China., Chen Y; Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China., Kang Q; Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China., Zhang Y; Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China., Yang P; Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China., Wang S; Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China., Liu C; Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China. lc_ahmu@163.com., Zhang Y; Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China. zy18356056506@163.com., Zhang Q; Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China. zhangqiu@ahmu.edu.cn. |
Language: |
English |
References: |
Mammen, J. S. R. & Cappola, A. R. Autoimmune thyroid disease in women. JAMA 325, 2392–2393. View item (2021). (PMID: 10.1001/jama.2020.221963393893010071442) Antonelli, A., Ferrari, S. M., Corrado, A., Di Domenicantonio, A. & Fallahi, P. Autoimmune thyroid disorders. Autoimmun. Rev. 14, 174–180. View item (2015). (PMID: 10.1016/j.autrev.2014.10.01625461470) Hwangbo, Y. & Park, Y. J. Genome-wide association studies of autoimmune thyroid diseases, thyroid function, and thyroid cancer. Endocrinol. Metab. (Seoul) 33, 175–184. View item (2018). (PMID: 10.3803/EnM.2018.33.2.17529947174) McLeod, D. S. & Cooper, D. S. The incidence and prevalence of thyroid autoimmunity. Endocrine 42, 252–265. View item (2012). (PMID: 10.1007/s12020-012-9703-222644837) Caturegli, P., De Remigis, A. & Rose, N. R. Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmun. Rev. 13, 391–397. View item (2014). (PMID: 10.1016/j.autrev.2014.01.00724434360) Chiovato, L., Magri, F. & Carle, A. Hypothyroidism in context: Where we’ve been and where we’re going. Adv. Ther. 36, 47–58. View item (2019). (PMID: 10.1007/s12325-019-01080-8314859756822815) Pisetsky, D. S. Pathogenesis of autoimmune disease. Nat. Rev. Nephrol. 19, 509–524. View item (2023). (PMID: 10.1038/s41581-023-00720-137165096) Effraimidis, G. & Wiersinga, W. M. Mechanisms in endocrinology: Autoimmune thyroid disease: old and new players. Eur. J. Endocrinol. 170, R241-252. View item (2014). (PMID: 10.1530/EJE-14-004724609834) Vargas-Uricoechea, H. Molecular mechanisms in autoimmune thyroid disease. Cells 12, 918. View item (2023). (PMID: 10.3390/cells120609183698025910047067) Stan, M. N. et al. Randomized controlled trial of rituximab in patients with Graves’ orbitopathy. J. Clin. Endocrinol. Metab. 100, 432–441. View item (2015). (PMID: 10.1210/jc.2014-257225343233) Smith, T. J. et al. Teprotumumab for thyroid-associated ophthalmopathy. N. Engl. J. Med. 376, 1748–1761. View item (2017). (PMID: 10.1056/NEJMoa1614949284678805718164) Davey Smith, G. & Hemani, G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, r89-98. View item (2014). (PMID: 10.1093/hmg/ddu328250643734170722) Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338. View item (2023). (PMID: 10.1038/s41586-023-06592-63779418610567551) Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721. View item (2021). (PMID: 10.1038/s41588-021-00978-w34857953) Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9, 383. View item (2017). (PMID: 10.1126/scitranslmed.aag1166) Chen, J. et al. Therapeutic targets for inflammatory bowel disease: Proteome-wide Mendelian randomization and colocalization analyses. EBioMedicine 89, 104494. View item (2023). (PMID: 10.1016/j.ebiom.2023.104494368578619986512) Yuan, S. et al. Plasma proteins and onset of type 2 diabetes and diabetic complications: Proteome-wide Mendelian randomization and colocalization analyses. Cell Rep. Med. 4, 101174. View item (2023). (PMID: 10.1016/j.xcrm.2023.1011743765202010518626) Zheng, J. et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat. Genet. 52, 1122–1131. View item (2020). (PMID: 10.1038/s41588-020-0682-6328955517610464) Saevarsdottir, S. et al. FLT3 stop mutation increases FLT3 ligand level and risk of autoimmune thyroid disease. Nature 584, 619–623. View item (2020). (PMID: 10.1038/s41586-020-2436-032581359) Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518. View item (2023). (PMID: 10.1038/s41586-022-05473-8366535629849126) Burgess, S., Davies, N. M. & Thompson, S. G. Bias due to participant overlap in two-sample Mendelian randomization. Genet. Epidemiol. 40, 597–608. View item (2016). (PMID: 10.1002/gepi.21998276251855082560) Bowden, J. et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the radial plot and radial regression. Int. J. Epidemiol. 47, 1264–1278. View item (2018). (PMID: 10.1093/ije/dyy101299618526124632) Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487. View item (2016). (PMID: 10.1038/ng.353827019110) Greco, M. F., Minelli, C., Sheehan, N. A. & Thompson, J. R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 34, 2926–2940. View item (2015). (PMID: 10.1002/sim.6522) Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525. View item (2015). (PMID: 10.1093/ije/dyv080260502534469799) Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383. View item (2014). (PMID: 10.1371/journal.pgen.1004383248303944022491) Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 17, e1009440. View item (2021). (PMID: 10.1371/journal.pgen.1009440345871568504726) Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314. View item (2016). (PMID: 10.1002/gepi.21965270612984849733) Warde-Farley, D. et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214-220. View item (2010). (PMID: 10.1093/nar/gkq537205767032896186) Knox, C. et al. DrugBank 6.0: The DrugBank knowledgebase for 2024. Nucleic Acids Res. View item (2023). (PMID: 10.1093/nar/gkad97610767804) Mendez, D. et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940. View item (2019). (PMID: 10.1093/nar/gky107530398643) Denny, J. C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol. 31, 1102–1110. View item (2013). (PMID: 10.1038/nbt.2749242708493969265) Gagliano Taliun, S. A. et al. Exploring and visualizing large-scale genetic associations by using PheWeb. Nat. Genet. 52, 550–552. View item (2020). (PMID: 10.1038/s41588-020-0622-5325040567754083) Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341. View item (2018). (PMID: 10.1038/s41588-018-0184-y301047616119127) Hemani, G. et al. The MR-base platform supports systematic causal inference across the human phenome. Elife View item (2018). (PMID: 10.7554/eLife.34408298461715976434) Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb.) 2, 100141. View item (2021). (PMID: 10.1016/j.xinn.2021.10014134557778) Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. View item (2007). (PMID: 10.1086/519795177019011950838) Collaboration, I. R. G. C. E. R. F. et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213, View item(11)61931-4 (2012). Ference, B. A., Majeed, F., Penumetcha, R., Flack, J. M. & Brook, R. D. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study. J. Am. Coll. Cardiol. 65, 1552–1561. View item (2015). (PMID: 10.1016/j.jacc.2015.02.020257703156101243) O’Shea, J. J., Ma, A. & Lipsky, P. Cytokines and autoimmunity. Nat. Rev. Immunol. 2, 37–45. View item (2002). (PMID: 10.1038/nri70211905836) Metcalfe, S. M. LIF in the regulation of T-cell fate and as a potential therapeutic. Genes Immun. 12, 157–168. View item (2011). (PMID: 10.1038/gene.2011.921368774) Ajjan, R. A. & Weetman, A. P. Cytokines in thyroid autoimmunity. Autoimmunity 36, 351–359. View item (2003). (PMID: 10.1080/0891693031000160304614669942) Chen, D., Tang, T. X., Deng, H., Yang, X. P. & Tang, Z. H. Interleukin-7 biology and its effects on immune cells: Mediator of generation, differentiation, survival, and homeostasis. Front. Immunol. 12, 747324. View item (2021). (PMID: 10.3389/fimmu.2021.747324349253238674869) Meyer, A., Parmar, P. J. & Shahrara, S. Significance of IL-7 and IL-7R in RA and autoimmunity. Autoimmun. Rev. 21, 103120. View item (2022). (PMID: 10.1016/j.autrev.2022.103120355950519987213) Kim, J. Y. et al. Association analysis of IL7R polymorphisms with inflammatory demyelinating diseases. Mol. Med. Rep. 9, 737–743. View item (2014). (PMID: 10.3892/mmr.2013.186324337176) Huang, Z., Qi, G., Miller, J. S. & Zheng, S. G. CD226: An emerging role in immunologic diseases. Front. Cell Dev. Biol. 8, 564. View item (2020). (PMID: 10.3389/fcell.2020.00564328507777396508) Lozano, E., Dominguez-Villar, M., Kuchroo, V. & Hafler, D. A. The TIGIT/CD226 axis regulates human T cell function. J Immunol 188, 3869–3875. View item (2012). (PMID: 10.4049/jimmunol.110362722427644) Elhai, M. et al. Targeting CD226/DNAX accessory molecule-1 (DNAM-1) in collagen-induced arthritis mouse models. J. Inflamm. (Lond.) 12, 9. View item (2015). (PMID: 10.1186/s12950-015-0056-525685070) Du, Y. et al. Association of the CD226 single nucleotide polymorphism with systemic lupus erythematosus in the Chinese Han population. Tissue Antigens 77, 65–67. View item (2011). (PMID: 10.1111/j.1399-0039.2010.01568.x20887380) Avouac, J. et al. Critical role of the adhesion receptor DNAX accessory molecule-1 (DNAM-1) in the development of inflammation-driven dermal fibrosis in a mouse model of systemic sclerosis. Ann. Rheum. Dis. 72, 1089–1098. View item (2013). (PMID: 10.1136/annrheumdis-2012-20175923161903) Mattana, T. C. et al. CD226 rs763361 is associated with the susceptibility to type 1 diabetes and greater frequency of GAD65 autoantibody in a Brazilian cohort. Mediat. Inflamm. 2014, 694948. View item (2014). (PMID: 10.1155/2014/694948) Luan, X. et al. Crystal structure of human RANKL complexed with its decoy receptor osteoprotegerin. J. Immunol. 189, 245–252. View item (2012). (PMID: 10.4049/jimmunol.110338722664871) Qu, H. et al. Immunoprofiling of active and inactive systemic juvenile idiopathic arthritis reveals distinct biomarkers: A single-center study. Pediatr. Rheumatol. Online J. 19, 173. View item (2021). (PMID: 10.1186/s12969-021-00660-9349634888713412) Carr, T. M., Wheaton, J. D., Houtz, G. M. & Ciofani, M. JunB promotes Th17 cell identity and restrains alternative CD4(+) T-cell programs during inflammation. Nat. Commun. 8, 301. View item (2017). (PMID: 10.1038/s41467-017-00380-3288241715563507) Kobayashi, S. et al. Integrated bulk and single-cell RNA-sequencing identified disease-relevant monocytes and a gene network module underlying systemic sclerosis. J. Autoimmun. 116, 102547. View item (2021). (PMID: 10.1016/j.jaut.2020.10254733039247) Fan, Q. et al. Assessment of circulating proteins in thyroid cancer: Proteome-wide Mendelian randomization and colocalization analysis. iScience 27, 109961. View item (2024). (PMID: 10.1016/j.isci.2024.1099613894750411214373) Li, Y., Song, X., Huang, Y., Zhou, S. & Zhong, L. Genetic associations of plasma metabolites with immune cells in hyperthyroidism revealed by Mendelian randomization and GWAS-sc-eQTLs xQTLbiolinks analysis. Sci. Rep. 15, 1377. View item (2025). (PMID: 10.1038/s41598-025-85664-13977979911711443) |
Contributed Indexing: |
Keywords: Autoimmune thyroid diseases; Causal association; Colocalization analysis; Mendelian randomization; Plasma protein |
Substance Nomenclature: |
0 (Blood Proteins) 0 (Proteome) 0 (Biomarkers) |
PubMed Central ID: |
PMC12144222 |
PMID: |
40481092 |
|