Silicon (Si) is regarded as a promising anode material owing to its high specific capacity and low lithiation potential. The large volume ch
Silicon (Si) is regarded as a promising anode material owing to its high specific capacity and low lithiation potential. The large volume change and the pulverization of silicon during the lithiation/delithiation process hinder its direct energy storage application. This review focuses on the electrospun silicon/carbon (Si/C) nanofiber anode materials for lithium-ion batteries for long-term stable energy storage. Silicon is completely embedded in electrospinning-based carbon nanofibers to form electrospun Si/C nanofibers. It not only creates pore space to buffer silicon volume expansion, but also prevents direct contact between silicon and the electrolyte, consequently forming a stable solid electrolyte interface film. The electrospun Si/C nanofibers solve the pulverization issue of silicon to achieve improved cycling stability. Furthermore, the electrospun carbon nanofibers form a flexible conductive network for surrounding silicon by facilely introducing sacrificial polymers or template agents. The electrospun Si/C nanofibers ultimately promote the lithium-ion transport to achieve rate stability. The silicon source selection and microstructure regulation of the electrospun Si/C nanofibers are overviewed. The silicon sources include the direct utilization of silicon or silicon oxide particles as well as the indirect conversion of silicon-based precursors. The cycling stability regulation of various metal- and metal oxide-modified silicon composites and heterogeneous carbon material-decorated electrospun Si/C nanofibers is summarized. In addition, the microstructure designs of the electrospun Si/C nanofibers associated with the improvement of long-term capacity retention are overviewed. The main challenges in the electrospun Si/C nanofiber anode materials are summarized, and the future perspectives are also proposed. [ABSTRACT FROM AUTHOR]
Copyright of Physical Chemistry Chemical Physics (PCCP) is the property of Royal Society of Chemistry and its content may not be copied or e
Copyright of Physical Chemistry Chemical Physics (PCCP) is the property of Royal Society of Chemistry and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)