The chemical inertness of the defect-free basal plane confers environmental stability to MoS2 single-layers, but it also limits their chemic
The chemical inertness of the defect-free basal plane confers environmental stability to MoS2 single-layers, but it also limits their chemical versatility and catalytic activity. The stability of the pristine MoS2 basal plane against oxidation under ambient conditions is a widely accepted assumption in the interpretation of various studies and applications. However, single-atom level structural investigations reported here reveal that oxygen atoms spontaneously incorporate into the basal plane of MoS2 single layers during ambient exposure. Our scanning tunneling microscopy investigations reveal a slow oxygen substitution reaction, upon which individual sulfur atoms are one by one replaced by oxygen, giving rise to solid solution type 2D MoS2-xOx crystals. O substitution sites present all over the basal plane act as single-atomic active reaction centers, substantially increasing the catalytic activity of the entire MoS2 basal plane for the electrochemical H2 evolution reaction. Comment: 6 pages, 5 figures