In the era of time-domain, multi-messenger astronomy, the detection of transient events on the high-energy electromagnetic sky has become mo
In the era of time-domain, multi-messenger astronomy, the detection of transient events on the high-energy electromagnetic sky has become more important than ever. The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is a dedicated mission to monitor gamma-ray transients, launched in December, 2020. A real-time on-board trigger and location software, using the traditional signal-to-noise ratio (SNR) method for blind search, is constrained to relatively bright signals due to the limitations in on-board computing resources and the need for real-time search. In this work, we developed a ground-based pipeline for GECAM to search for various transients, especially for weak bursts missed by on-board software. This pipeline includes both automatic and manual mode, offering options for blind search and targeted search. The targeted search is specifically designed to search for interesting weak bursts, such as gravitational wave-associated gamma-ray bursts (GRBs). From the ground search of the data in the first year, GECAM has been triggered by 54 GRBs and other transients, including soft gamma-ray repeaters, X-ray binaries, solar flares, terrestrial gamma-ray flashes. We report the properties of each type of triggers,such as trigger time and light curves. With this search pipeline and assuming a soft Band spectrum, the GRB detection sensitivity of GECAM is increased to about 1.1E-08 erg cm-2 s-1 (10 keV - 1000 keV, burst duration of 20 s). These results demonstrate that the GECAM ground search system (both blind search and targeted search) is a versatile pipeline to recover true astrophysical signals which were too weak to be found in the on-board search. Comment: Accepted by SCIENCE CHINA Physics, Mechanics & Astronomy (SCPMA)