Galaxy major mergers are a key pathway to trigger AGN. We present the first detection of major mergers in the Euclid Deep Fields and analyse
Galaxy major mergers are a key pathway to trigger AGN. We present the first detection of major mergers in the Euclid Deep Fields and analyse their connection with AGN. We constructed a stellar-mass-complete ($M_*>10^{9.8}\,M_{\odot}$) sample of galaxies from the first quick data release (Q1), in the redshift range z=0.5-2. We selected AGN using X-ray data, optical spectroscopy, mid-infrared colours, and processing \IE observations with an image decomposition algorithm. We used CNNs trained on cosmological simulations to classify galaxies as mergers and non-mergers. We found a larger fraction of AGN in mergers compared to the non-merger controls for all AGN selections, with AGN excess factors ranging from 2 to 6. Likewise, a generally larger merger fraction ($f_{merg}$) is seen in active galaxies than in the non-active controls. We analysed $f_{merg}$ as a function of the AGN bolometric luminosity ($L_{bol}$) and the contribution of the point-source to the total galaxy light in the \IE-band ($f_{PSF}$) as a proxy for the relative AGN contribution fraction. We uncovered a rising $f_{merg}$, with increasing $f_{PSF}$ up to $f_{PSF}=0.55$, after which we observed a decreasing trend. We then derived the point-source luminosity ($L_{PSF}$) and showed that $f_{merg}$ monotonically increases as a function of $L_{PSF}$ at z<0.9, with $f_{merg}>$50% for $L_{PSF}>2\,10^{43}$ erg/s. At z>0.9, $f_{merg}$ rises as a function of $L_{PSF}$, though mergers do not dominate until $L_{PSF}=10^{45}$ erg/s. For X-ray and spectroscopic AGN, we computed $L_{bol}$, which has a positive correlation with $f_{merg}$ for X-ray AGN, while shows a less pronounced trend for spectroscopic AGN due to the smaller sample size. At $L_{bol}>10^{45}$ erg/s, AGN mostly reside in mergers. We concluded that mergers are strongly linked to the most powerful, dust-obscured AGN, associated with rapid supermassive black hole growth. Comment: Paper submitted as part of the A&A Special Issue `Euclid Quick Data Release (Q1)', 23 pages, 21 figures