We study the Hamiltonian flow for optimization (HF-opt), which simulates the Hamiltonian dynamics for some integration time and resets the v
We study the Hamiltonian flow for optimization (HF-opt), which simulates the Hamiltonian dynamics for some integration time and resets the velocity to $0$ to decrease the objective function; this is the optimization analogue of the Hamiltonian Monte Carlo algorithm for sampling. For short integration time, HF-opt has the same convergence rates as gradient descent for minimizing strongly and weakly convex functions. We show that by randomizing the integration time in HF-opt, the resulting randomized Hamiltonian flow (RHF) achieves accelerated convergence rates in continuous time, similar to the rates for the accelerated gradient flow. We study a discrete-time implementation of RHF as the randomized Hamiltonian gradient descent (RHGD) algorithm. We prove that RHGD achieves the same accelerated convergence rates as Nesterov's accelerated gradient descent (AGD) for minimizing smooth strongly and weakly convex functions. We provide numerical experiments to demonstrate that RHGD is competitive with classical accelerated methods such as AGD across all settings and outperforms them in certain regimes.