Large language models (LLMs) excel in tasks like question answering and dialogue, but complex tasks requiring interaction, such as negotiati
Large language models (LLMs) excel in tasks like question answering and dialogue, but complex tasks requiring interaction, such as negotiation and persuasion, require additional long-horizon reasoning and planning. Reinforcement learning (RL) fine-tuning can enable such planning in principle, but suffers from drawbacks that hinder scalability. In particular, multi-turn RL training incurs high memory and computational costs, which are exacerbated when training LLMs as policies. Furthermore, the largest LLMs do not expose the APIs necessary to be trained in such manner. As a result, modern methods to improve the reasoning of LLMs rely on sophisticated prompting mechanisms rather than RL fine-tuning. To remedy this, we propose a novel approach that uses goal-conditioned value functions to guide the reasoning of LLM agents, that scales even to large API-based models. These value functions predict how a task will unfold given an action, allowing the LLM agent to evaluate multiple possible outcomes, both positive and negative, to plan effectively. In addition, these value functions are trained over reasoning steps rather than full actions, to be a concise and light-weight module that facilitates decision-making in multi-turn interactions. We validate our method on tasks requiring interaction, including tool use, social deduction, and dialogue, demonstrating superior performance over both RL fine-tuning and prompting methods while maintaining efficiency and scalability. Comment: 18 pages, 4 figures, 2 tables