About ten years ago, we established the first coronagraph that has been continuously operating on the high plateau of western China. This co
About ten years ago, we established the first coronagraph that has been continuously operating on the high plateau of western China. This coronagraph is an internal occulting, 10 cm aperture instrument, installed at Lijiang Station through a collaboration with the Norikura Station of the National Astronomical Observatory of Japan. To ensure high efficiency in current and future coronal observations, developing integrated observation systems is essential for reliable, autonomous, and remote operation of coronagraphs. This paper introduces an advanced integrated observation and control system, based on the Lijiang 10 cm coronagraph. The coronagraph focuses on the observations for the solar inner corona, capturing the coronal green-line emission within a field range from 1.03R⨀ to 2.5R⨀. To enhance the observational precision and efficiency, a comprehensive integrated system has been designed, incorporating various subsystems, including precise pointing and tracking mechanisms, a multi-band filter system, a protective dome system, and a robust data storage infrastructure. This paper details the hardware architecture and software frameworks supporting each subsystem. Results from extended operational testing confirm the stability of the system, its capacity for autonomous and remote observations, and significant improvements in the automation and efficiency of coronal imaging. The automated observation system will be further improved and used for our future coronagraphs to be developed for coronal magnetism diagnosis.