A novel data assimilation technique is developed to assimilate MODIS (Moderate Resolution Imaging Spectroradiometer) level two (L2) cloud pr
A novel data assimilation technique is developed to assimilate MODIS (Moderate Resolution Imaging Spectroradiometer) level two (L2) cloud products, including cloud optical thickness (COT), cloud particle effective radius (Re), cloud water path (CWP), and cloud top pressure (CTP), into the Weather Research and Forecast (WRF) model. Its impact on the analysis and forecast of Typhoon Talim in 2023 at its initial developing stage is demonstrated. First, the conditional generative adversarial networks–bidirectional ensemble binned probability fusion (CGAN-BEBPF) model ) is applied to retrieve three-dimensional (3D) CloudSat CPR (cloud profiling radar) equivalent W-band (94 Ghz) radar reflectivity factor for the typhoons Talim and Chaba using the MODIS L2 data. Next, a W-band to S-band radar reflectivity factor mapping algorithm (W2S) is developed based on the collocated measurements of the retrieved W-band radar and ground-based S-band (4 Ghz) radar data for Typhoon Chaba at its landfall time. Then, W2S is utilized to project the MODIS-retrieved 3D W-band radar reflectivity factor of Typhoon Talim to equivalent ground-based S-band reflectivity factors. Finally, data assimilation and forecast experiments are conducted by using the WRF Hydrometeor and Latent Heat Nudging (HLHN) radar data assimilation technique. Verification of the simulation results shows that assimilating the MODIS L2 cloud products dramatically improves the initialization and forecast of the cloud and precipitation fields of Typhoon Talim. In comparison to the experiment without assimilation of the MODIS data, the Threat Score (TS) for general cloud areas and major precipitation areas is increased by 0.17 (from 0.46 to 0.63) and 0.28 (from 0.14 to 0.42), respectively. The fraction skill score (FSS) for the 5 mm precipitation threshold is increased by 0.43. This study provides an unprecedented data assimilation method to initialize 3D cloud and precipitation hydrometeor fields with the MODIS imagery payloads for numerical weather prediction models.