Dynamic rupture simulations of earthquakes offer crucial insights into the physical mechanisms of driving fault slip and seismic hazards. By
Dynamic rupture simulations of earthquakes offer crucial insights into the physical mechanisms of driving fault slip and seismic hazards. By incorporating non-planar fault models that accurately represent subsurface structures, this study provides a realistic depiction of the rupture processes of the 2020 Mw 6.8 Elazığ, Türkiye earthquake, influenced by geometric complexities. Initially, we determined its coseismic slip on the non-planar fault using near-field strong motion and InSAR observations. Subsequently, we established the heterogeneous initial stress on the fault plane based on the coseismic slip and integrated it into the dynamic rupture modeling to assess physics-based ground motion and seismic hazards. The numerical simulations utilized the curved grid finite-difference method (CGFDM), which effectively models rupture dynamics with heterogeneities in fault geometry, initial stress, and other factors. Our synthetic surface deformation and seismograms align well with the observational data obtained from InSAR and seismic instruments. We observed localized occurrences of supershear rupture during fault propagation. Furthermore, the intensity distribution we simulated closely aligns with the actual observations. These findings highlight the critical role of source heterogeneity in seismic hazard assessment, advancing our understanding of fault dynamics and enhancing predictive capabilities.