Abstract Background Runs of homozygosity (ROH) are continuous segments of homozygous genotypes inherited from both parental lineages. These
Abstract Background Runs of homozygosity (ROH) are continuous segments of homozygous genotypes inherited from both parental lineages. These segments arise due to the transmission of identical haplotypes. The genome-wide patterns and hotspot regions of ROH provide valuable insights into genetic diversity, demographic history, and selection trends. In this study, we analyzed whole-genome resequencing data from 117 rabbits to identify ROH patterns and inbreeding level across eleven rabbit breeds, including seven Chinese indigenous breeds and four exotic breeds, and to uncover selective signatures based on ROH islands. Results We detected a total of 31,429 ROHs across the autosomes of all breeds, with the number of ROHs (NROH) per breed ranging from 1316 to 7476. The mean sum of ROHs length (SROH) per individual was 493.84 Mb, covering approximately 22.79% of the rabbit autosomal genome. The majority of the detected ROHs ranged from 1 to 2 Mb in length, with an average ROH length (LROH) of 1.84 Mb. ROHs longer than 6 Mb constituted only 0.83% of the detected ROHs. The average inbreeding coefficient derived from ROHs (FROH) was 0.23, with FROH values ranging from 0.14 to 0.38 across breeds. Among Chinese indigenous breeds, the Jiuyishan rabbit exhibited the highest values of NROH, SROH, LROH, and FROH, whereas the Fujian Yellow rabbit had the lowest FROH values. In exotic rabbit breeds, the Japanese White rabbit displayed the highest values for NROH, SROH, LROH, and FROH, while the Flemish Giant rabbit had the lowest values for these metrics. Additionally, we identified 17 ROH islands in Chinese indigenous breeds and 22 ROH islands in exotic rabbit breeds, encompassing 124 and 186 genes, respectively. In Chinese indigenous breeds, we identified prominent genes associated with reproduction, including CFAP206, RNF133, CPNE4, ASTE1, and ATP2C1, as well as genes related to adaptation, namely CADPS2, FEZF1, and EPHA7. In contrast, the exotic breeds exhibited a prevalence of genes associated with fat deposition, such as ELOVL3 and NPM3, as well as growth and body weight related genes, including FAM184B, NSMCE2, and TWNK. Conclusions This study enhances our understanding of genetic diversity and selection pressures in domestic rabbits, offering valuable implications for breeding management and conservation strategies.