Abstract Recently, there has been growing interest in the role of circular RNAs (circRNAs) in the progression of human cancers. Cellular sen
Abstract Recently, there has been growing interest in the role of circular RNAs (circRNAs) in the progression of human cancers. Cellular senescence, a known anti-tumour mechanism, has been observed in several types of cancer. However, the regulatory interplay of circRNAs with cellular senescence in pancreatic cancer (PC) is still unknown. Therefore, we identified circHIF-1α, hsa_circ_0007976, which was downregulated in senescent cells using circRNA microarray analysis. Meanwhile, significantly upregulated expression of circHIF-1α in pancreatic cancer tissue detected by reverse transcription-polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH). High circHIF-1α expression levels were found to independently predict poor survival outcomes. Subsequent treatments with DOX and H2O2 resulted in significantly lower levels of circHIF-1α. CircHIF-1α knockdown induces cellular senescence and suppresses PC proliferation in vitro experiments. The ability of circHIF-1α knockdown to suppress the progression of PC cells was further confirmed in vivo experiments. Our results showed that circHIF-1α is mainly presented in the nucleus of PC cells, also in the cytoplasm. Mechanistically, circHIF-1α inhibited senescence and accelerated the progression of PC cells through miR-375 sponging, thereby promoting HIF-1α expression levels. Nuclear circHIF-1α interacted with human antigen R protein (HUR) to increase HIF-1α expression. Thus, our results demonstrated that circHIF-1α ameliorates senescence and exacerbates growth in PC cells by increasing HIF-1α through targeting miR-375 and HUR, suggesting that targeting circHIF-1α offers a potential therapeutic candidate for PC.