Abstract Background Depression is one of the most common mental disorders characterized mainly by low mood and loss of interest or pleasure.
Abstract Background Depression is one of the most common mental disorders characterized mainly by low mood and loss of interest or pleasure. About a third of patients with depression do not respond to classic antidepressant treatments. Recent evidence suggests that Mrp8/14 (myeloid-related protein 8/14) plays a crucial role in cognitive dysfunction and neuroinflammatory diseases, yet its role in mood regulation remains largely uninvestigated. In the present work, we explored the potential role of Mrp8/14 in the progression of depression. Methods After 4 weeks of chronic unpredictable mild stress (CUMS), depressive-like symptoms and Mrp8/14 were determined. To verify the effects of Mrp8/14 on depressive-like behaviors, the inhibitor TAK-242 and recombinant Mrp8/14 were used. Furthermore, the molecular mechanisms in Mrp8/14-induced behavioral and biological changes were examined in vivo and ex vivo. Results Four-week CUMS contributed to the development of depressive symptoms. Mrp8 and Mrp14 were upregulated in the hippocampus and serum after exposure to CUMS. Pharmacological inhibition of Mrp14 attenuated CUMS-induced TLR4/NF-κB signaling activation and depressive-like behaviors. Furthermore, central administration of recombinant Mrp8, Mrp14, and Mrp8/14 resulted in neuroinflammation and depressive-like behaviors. Mrp8/14-provoked proinflammatory effects and depressive-like behaviors were improved by pretreatment with a TLR4 inhibitor. Moreover, pharmacological inhibition of TLR4 reduced the release of nitric oxide and reactive oxygen species in Mrp8/14-activated BV2 microglia. Conclusions These data suggest that the hippocampal Mrp8/14-TLR4-mediated neuroinflammation contributes to the development of depressive-like behaviors. Targeting the Mrp8/14 may be a novel promising antidepressant approach.