As a precious non-renewable resource, the rational utilization of land resources is crucial for global sustainable development, with urban l
As a precious non-renewable resource, the rational utilization of land resources is crucial for global sustainable development, with urban land development scenario prediction and analysis serving as key methodologies to achieve this goal. Although previous studies have extensively explored urban land expansion simulation and scenario forecasting, further investigation is still required to simultaneously address spatial functional zoning differentiation and urban expansion mode diversity while simulating development trends under various expansion modes. In this study, we integrated major functional zones and ecological redlines to delineate urban spatial functional units and define development coefficients for construction land within each unit. Based on the spatial heterogeneity of expansion modes, the scopes of infill, sprawl, and leapfrog expansion modes were determined. Combining functional zoning and expansion mode zoning, we employed cellular automata model principles to design land conversion rules and simulate the evolution of land use under different expansion modes. Using Jiangyin City, China, as a case study, the model achieved a high simulation accuracy (kappa coefficient of 0.959), significantly outperforming comparative models. By predicting land-use patterns under different expansion scenarios and aligning with Jiangyin’s territorial planning goals, we recommend implementing infill–sprawl–leapfrog and infill–leapfrog–sprawl expansion modes. The results demonstrate that the model effectively supports the refined simulation of urban land expansion, providing a scientific basis for optimizing land resource allocation and balancing ecological protection with urban development. Future research could integrate multiple types of territorial control elements, refine land-use categories, and optimize prediction scenarios to enhance the model’s practicality and applicability.