Abstract Pseudorabies virus (PRV) causes neurological disorders and organ damage in diseased animals. After initial infection, PRV activity
Abstract Pseudorabies virus (PRV) causes neurological disorders and organ damage in diseased animals. After initial infection, PRV activity is gradually inhibited; however, stress stimulation increases the host’s glucocorticoid levels, which overcomes the inhibition of PRV activity. Curcumin (Cur) helps maintain the inhibitory state of the Epstein-Barr virus, although further research is needed to establish whether Cur can prevent PRV activation triggered by stress hormones. In this study, we used PC-12 cells to determine the effects of Cur on PRV activation. The cells were successfully infected with PRV at a multiplicity of infection of 1 for 24 h, resulting in the inhibition of PRV activity. Following incubation with 0.5 µM dexamethasone (DEX) for 4 h, the inhibition of PRV activity was blocked. Further mechanistic analyses using a dual-luciferase assay revealed that miR-155-5p directly targets and regulates Aak1 and its downstream signalling molecules, Numb and Notch2, in maintaining and disrupting PRV inhibition. Moreover, in vitro experiments using miR-155-5p mimics and inhibitors, combined with Aak1 overexpression and interference, confirmed that the miR-155-5p-Aak1-Numb/Notch2 axis prevented DEX-induced disruption of PRV inhibition by Cur. These findings provide a novel regulatory target for preventing stress-activated PRV and provide evidence for the potential use of Cur as a stress modulator in practical applications.