Abstract Background Brain metastases are common complications in patients with cancer and significantly affect prognosis and treatment strat
Abstract Background Brain metastases are common complications in patients with cancer and significantly affect prognosis and treatment strategies. The accurate segmentation of brain metastases is crucial for effective radiation therapy planning. However, in resource-limited areas, the unavailability of MRI imaging is a significant challenge that necessitates the development of reliable segmentation models for computed tomography images (CT). Purpose This study aimed to develop and evaluate a Diffusion-CSPAM-U-Net model for the segmentation of brain metastases on CT images and thereby provide a robust tool for radiation oncologists in regions where magnetic resonance imaging (MRI) is not accessible. Methods The proposed Diffusion-CSPAM-U-Net model integrates diffusion models with channel-spatial-positional attention mechanisms to enhance the segmentation performance. The model was trained and validated on a dataset consisting of CT images from two centers (n = 205) and (n = 45). Performance metrics, including the Dice similarity coefficient (DSC), intersection over union (IoU), accuracy, sensitivity, and specificity, were calculated. Additionally, this study compared models proposed for brain metastases of different sizes with those proposed in other studies. Results The diffusion-CSPAM-U-Net model achieved promising results on the external validation set. Overall average DSC of 79.3% ± 13.3%, IoU of 69.2% ± 13.3%, accuracy of 95.5% ± 11.8%, sensitivity of 80.3% ± 12.1%, specificity of 93.8% ± 14.0%, and HD of 5.606 ± 0.990 mm were measured. These results demonstrate favorable improvements over existing models. Conclusions The diffusion-CSPAM-U-Net model showed promising results in segmenting brain metastases in CT images, particularly in terms of sensitivity and accuracy. The proposed diffusion-CSPAM-U-Net model provides an effective tool for radiation oncologists for the segmentation of brain metastases in CT images.