In the context of rapid advancement of smart cities, a distribution network (DN) serving as the backbone of urban operations is a way to con
In the context of rapid advancement of smart cities, a distribution network (DN) serving as the backbone of urban operations is a way to confront multifaceted challenges that demand innovative solutions. Central among these, it is imperative to optimize resource allocation and enhance the efficient utilization of diverse energy sources, with particular emphasis on seamless integration of renewable energy systems into existing infrastructure. At the same time, considering that the traditional power system’s “rigid”, instantaneous, dynamic, and balanced law of electricity, “source-load”, is difficult to adapt to the grid-connection of a high proportion of distributed generations (DGs), the collaborative interaction of multiple flexible controllable resources, like flexible loads, are able to supplement the power system with sufficient “flexibility” to effectively alleviate the uncertainty caused by intermittent fluctuations in new energy. Therefore, an active distribution network (ADN) intraday, reactive, power optimization-scheduling model is designed. The dynamic reactive power collaborative interaction model, considering the integration of DG, energy storage (ES), flexible loads, as well as reactive power compensators into the IEEE 33-node system, is constructed with the goals of reducing intraday network losses, keeping voltage deviations to a minimum throughout the day, and optimizing static voltage stability in an active distribution network. Simulation outcomes for an enhanced IEEE 33-node system show that coordinated operation of source–network–load–storage effectively reduces intraday active power loss, improves voltage regulation capability, and achieves secure and reliable operation under ADN. Therefore, it will contribute to the construction of future smart city power systems to a certain extent.