Abstract Aging is a pivotal risk factor for intervertebral disc degeneration (IVDD) and chronic low back pain (LBP). The restoration of agin
Abstract Aging is a pivotal risk factor for intervertebral disc degeneration (IVDD) and chronic low back pain (LBP). The restoration of aging nucleus pulposus cells (NPCs) to a youthful epigenetic state is crucial for IVDD treatment, but remains a formidable challenge. Here, we proposed a strategy to partially reprogram and reinstate youthful epigenetics of senescent NPCs by delivering a plasmid carrier that expressed pluripotency-associated genes (Oct4, Klf4 and Sox2) in Cavin2-modified exosomes (OKS@M-Exo) for treatment of IVDD and alleviating LBP. The functional OKS@M-Exo efficaciously alleviated senescence markers (p16 INK4a , p21 CIP1 and p53), reduced DNA damage and H4K20me3 expression, as well as restored proliferation ability and metabolic balance in senescent NPCs, as validated through in vitro experiments. In a rat model of IVDD, OKS@M-Exo maintained intervertebral disc height, nucleus pulposus hydration and tissue structure, effectively ameliorated IVDD via decreasing the senescence markers. Additionally, OKS@M-Exo reduced nociceptive behavior and downregulated nociception markers, indicating its efficiency in alleviating LBP. The transcriptome sequencing analysis also demonstrated that OKS@M-Exo could decrease the expression of age-related pathways and restore cell proliferation. Collectively, reprogramming by the OKS@M-Exo to restore youthful epigenetics of senescent NPCs may hold promise as a therapeutic platform to treat IVDD.