Abstract Background We aim to compare with the diagnostic performance of target-position quantitative flow ratio derived from Murray Law (ta
Abstract Background We aim to compare with the diagnostic performance of target-position quantitative flow ratio derived from Murray Law (target-μFR) and vessel quantitative flow ratio derived from Murray Law (vessel-μFR) using the fractional flow reserve (FFR) as reference standard. This study may provide more evidence for the novel clinical usage of target-μFR in the diagnosis of coronary artery disease. Methods Six hundreds and fifty-six patients (685 lesions) with known or suspected coronary artery disease were screened for this retrospective analysis between January 2021 to March 2023. A total of 161 patients (190 lesions) underwent quantitative coronary angiography and FFR evaluations. In the final analysis, 137 patients (146 lesions) were included in this study. Both of target-μFR and vessel-μFR were compared the diagnostic performance using the FFR ≤ 0.80 as the reference standard. Results Both target-μFR (R = 0.84) and vessel-μFR (R = 0.83) demonstrated a strong correlation with FFR, and both methods showed great agreement with FFR. The area under the receiver operating characteristic curve was 0.937 for target-μFR and 0.936 for vessel-μFR in predicting FFR ≤ 0.80. FFR ≤ 0.80 were predicted with high sensitivity (86.44%) and specificity (88.51%) using the pre-defined cutt-off of 0.80 for target-μFR. A good diagnostic performance (sensitivity 92.98% and specificity 91.01%) was also demonstrated by vessel-μFR which the pre-defined cutt-off was 0.80. Conclusion The target-μFR has the similar diagnostic performance with vessel-μFR. The accuracy of μFR does not seem to be affected by the selection of the measurement point. Both of the virtual models have been validated as computational tools for diagnosing ischemia and are instrumental in aiding clinical decision-making.