To establish a BALB/c-nu mouse model of invasive bladder carcinoma and to investigate the feasibility, efficacy, and side effects of treatin
To establish a BALB/c-nu mouse model of invasive bladder carcinoma and to investigate the feasibility, efficacy, and side effects of treating the mouse xenografts with internal iliac arterial infusion of albumin-bound arsenic trioxide (As2O3). Bladder tumors were established by intravesicular injection. Color Doppler were used to monitor tumor growth. Albumin-bound As2O3 and bovine serum albumin (BSA) nanoparticles were synthesized by cross-linking. BALB/c-nu mice were randomly divided into four treatment groups: 1) normal saline, 2) BSA nanoparticles, 3) As2O3 injections, and 4) albumin-bound As2O3. In an attempt to replicate the treatment of bladder cancer in humans using internal iliac arterial infusion, the drugs were injected into the mouse abdominal aorta. Tumor xenografts were established successfully. Mice treated with As2O3 injections and with albumin-bound As2O3 had significantly smaller bladders (36.59% and 37.82% smaller, respectively) than mice given normal saline injections (P < 0.01). Mice receiving As2O3 injections had lower white blood cell (WBC) and platelet counts compared with mice receiving normal saline injections only (P < 0.05). However, mice treated with albumin-bound As2O3 did not experience a significant decrease in WBC or platelet counts compared with control mice. A model of intra-arterial bladder cancer treatment was successfully established in BALB/c-nu mice. In this model, albumin-bound As2O3 appeared to be an effective method for treating bladder tumors, with less severe hematologic side effects compared with As2O3 alone. The infusion of albumin-bound As2O3 through the internal iliac artery is a promising method of bladder cancer therapy.