The transcription factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular defense mechanisms against oxidative stress
The transcription factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular defense mechanisms against oxidative stress and inflammation. Keap1 (Kelch-like ECH-associated protein 1) regulates Nrf2 activity by ubiquitination-mediated cytoplasmic retention, thereby suppressing its nuclear translocation and subsequent transcriptional activation of genes encoding phase II detoxifying enzymes. Using a structure-based virtual screening approach, we screened ~16,000 natural compounds to identify Keap1-Nrf2 PPI inhibitors. Nine compounds were identified based on their high binding affinities and favorable interactions with Keap1, primarily through non-covalent interactions. To validate the binding stability of these inhibitors, molecular dynamics (MD) simulations were performed, confirming the robustness of the Keap1–inhibitor complexes over time. Subsequent in vitro assays on human epithelial keratinocyte cells (HaCaT) revealed that six of these compounds notably upregulated Nrf2 mRNA expression, regis tering increases from 23% to 50% in comparison to the control. Notably, chebulinic acid emerged as the most potent compound, demonstrating the greatest elevation in Nrf2 expression. Penetration studies further showed that chebulinic acid, when encapsulated in silk fibroin, achieved a 0.14% penetration rate after 24 h though it could not penetrate into the stratum corneum alone. This result highlighted the potential of chebulinic acid in the use of anti-aging skincare formulations. Collectively, our findings affirmed that molecular docking is a reliable and effective approach for the identification of novel anti-aging agents targeting the Keap1-Nrf2 pathway.