This study was designed to investigate the effects of Fermented Broussonetia papyrifera (FBP) on growth performance, meat quality, and the e
This study was designed to investigate the effects of Fermented Broussonetia papyrifera (FBP) on growth performance, meat quality, and the expression of meat quality-related genes in Taihe black-bone silky fowl (TBsf). In the present study, 360 ninety-day-old TBsfs (body weight = 781 ± 0.85 g) were divided into 4 groups with 5 replicates (18 hens per replicate), of which the control group was fed the basal diet and the 3 experimental groups were supplemented with 2%, 4%, and 8% FBP. After 75 days, 8 TBsfs in each group were randomly selected to collect their left pectoral muscles for meat quality and transcriptome analysis. Compared with the control group, 4% FBP improved the growth performance and meat quality of TBsf, evidenced by the increasing trend in the ratio of feed intake to body weight gain (P = 0.082), and significantly increased equivalent umami concentration (EUC), amino acid, and nucleotide compositions (P < 0.05). In addition, the remaining meat quality indices including the yellowness of meat color, muscle fiber density, and shear force were also improved in the 4% group (P < 0.05), with consistent improvements in the 8% FBP group. The transcriptome results indicated that FBP may regulate muscle fiber growth and development through the Forkhead box O (FoxO) and mitogen-activated protein kinase (MAPK) signaling pathways, and regulate meat color through the adipocytokine signaling pathway. Weighted gene coexpression network analysis (WGCNA) further revealed the candidate genes involved in amino acid metabolism and nucleotide metabolism, and the trends of these genes were inflecting with the 4% FBP group. Together, these results suggest that FBP significantly improved the growth performance, and meat quality of TBsf, with 4% FBP as the optimal addition ratio, and the transcriptome analysis revealed the mechanism of gene regulation.