Abstract Mast cells play a central role in allergic reactions, acting as key effector cells that initiate and amplify the inflammatory respo
Abstract Mast cells play a central role in allergic reactions, acting as key effector cells that initiate and amplify the inflammatory response. In this study, we demonstrate that phosphatase of regenerating liver 2 (PRL2) functions as a negative regulator of FcεRI-mediated mast cell activation. In PRL2-deficient myeloid cells, PRL2 conditional knockout mice developed more severe passive systemic anaphylaxis (PSA). Although PRL2 deficiency does not impact mast cell development, in the absence of PRL2 FcεRI-mediated mast cell activation is enhanced. In the presence of IgE the expression of mast cell PRL2 is downregulated, leading to modulation of the cellular response. In PRL2-deficient mast cells, the PI3K signaling pathway is upregulated, resulting in increased calcium influx. This, in turn, enhances mast cell degranulation and the production of inflammatory mediators. Moreover, hydroxychloroquine (an inhibitor of PRL2 degradation) reduces the severity of PSA in wild-type mice. Our findings suggest that PRL2 acts as a negative regulator of FcεRI-mediated mast cell activation. Therefore, therapeutic strategies aimed at enhancing PRL2 activity in mast cells may offer a promising approach for the treatment of allergic disorders.