Abstract Background Continuous glucose monitoring (CGM) devices provide detailed information on daily glucose control and glycemic variabili
Abstract Background Continuous glucose monitoring (CGM) devices provide detailed information on daily glucose control and glycemic variability. Yet limited population-based studies have explored the association between CGM metrics and fatty liver. We aimed to investigate the associations of CGM metrics with the degree of hepatic steatosis. Methods This cross-sectional study included 1180 participants from the Guangzhou Nutrition and Health Study. CGM metrics, covering mean glucose level, glycemic variability, and in-range measures, were separately processed for all-day, nighttime, and daytime periods. Hepatic steatosis degree (healthy: n = 698; mild steatosis: n = 242; moderate/severe steatosis: n = 240) was determined by magnetic resonance imaging proton density fat fraction. Multivariate ordinal logistic regression models were conducted to estimate the associations between CGM metrics and steatosis degree. Machine learning models were employed to evaluate the predictive performance of CGM metrics for steatosis degree. Results Mean blood glucose, coefficient of variation (CV) of glucose, mean amplitude of glucose excursions (MAGE), and mean of daily differences (MODD) were positively associated with steatosis degree, with corresponding odds ratios (ORs) and 95% confidence intervals (CIs) of 1.35 (1.17, 1.56), 1.21 (1.06, 1.39), 1.37 (1.19, 1.57), and 1.35 (1.17, 1.56) during all-day period. Notably, lower daytime time in range (TIR) and higher nighttime TIR were associated with higher steatosis degree, with ORs (95% CIs) of 0.83 (0.73, 0.95) and 1.16 (1.00, 1.33), respectively. For moderate/severe steatosis (vs. healthy) prediction, the average area under the receiver operating characteristic curves were higher for the nighttime (0.69) and daytime (0.66) metrics than that of all-day metrics (0.63, P