Tea (Camellia sinensis L.) disease detection in complex field conditions faces significant challenges due to the scarcity of labeled data. W
Tea (Camellia sinensis L.) disease detection in complex field conditions faces significant challenges due to the scarcity of labeled data. While current mainstream visual deep learning algorithms depend on large-scale curated datasets. To address this, we propose a novel few-shot end-to-end detection network called MAF-MixNet that achieves robust detection with minimal annotation data. The network effectively overcomes the bottleneck of insufficient feature extraction under limited samples of existing methods, through the design of a mixed attention branch (MA-Branch) and a multi-path feature fusion module (MAFM). The former extracts contextual features, while the latter combines and enhances the local and global features. The entire model uses a two-stage paradigm to pretrain on public datasets and fine-tune on balanced subset datasets, including novel tea disease classes, anthracnose, and brown blight. Comparative experiments with six models on four evaluation metrics verified the advancement of our model. At 5-shot, MAF-MixNet achieves scores of 62.0%, 60.1%, and 65.9% in precision, nAP50, and F1 score, respectively, significantly outperforming other models. Similar superiority is achieved in the 10-shot scenario, where nAP50 is 73.8%. Our model maintains a certain computational efficiency and achieves the second fastest inference speed at 11.63 FPS, making it viable for real-world deployment. The results confirm MAF-MixNet’s potential to enable cost-effective, intelligent disease monitoring in precision agriculture.