Abstract SARS-CoV-2 variants present diverse clinical manifestations, necessitating deeper insights into their pathogenic effects. This stud
Abstract SARS-CoV-2 variants present diverse clinical manifestations, necessitating deeper insights into their pathogenic effects. This study employs multi-omics approaches to investigate the molecular mechanisms underlying SARS-CoV-2 infection, focusing on vascular damage. Plasma proteomic analysis of unvaccinated participants infected with Omicron BA.2.76 or ancestral variants identifies key signaling pathways associated with endothelial dysfunction, with the vinculin (VCL) pathway emerging as a hallmark of Omicron infections, contributing to lung exudation. Metabolomic analysis of plasma samples from the same cohort reveals disruptions in immune function, cell membrane integrity, and metabolic processes, including altered tricarboxylic acid cycle and glycolysis pathways. An integrated analysis of proteomic and metabolomic data underscores the role of VCL in inflammation and extravasation, highlighting its interactions with adhesion molecules and inflammatory metabolites. A validation cohort of plasma samples from Omicron-infected participants confirms this association by replicating proteomic analysis, showing elevated VCL levels correlated with inflammatory markers. Functional studies in a male rat model of lung injury demonstrate that anti-VCL intervention reduces plasma VCL levels, mitigates alveolar edema, and restores alveolar-capillary barrier integrity, as assessed by histological staining and electron microscopy, thereby illustrating VCL modulation’s impact on vascular leakage and extravasation. These findings establish VCL as a potential therapeutic target for mitigating vascular complications in SARS-CoV-2 infections.