Abstract Background Immune evasion is a characteristic hallmark of cancer. Immunotherapies aim to activate and support the body's immune sys
Abstract Background Immune evasion is a characteristic hallmark of cancer. Immunotherapies aim to activate and support the body's immune system to recognize and fight tumor cells. Induction of immunogenic cell death (ICD) and the associated activation of danger signaling pathways can increase the immunogenicity of tumor cells. Therapeutic ICD stimuli activate endoplasmic reticulum stress pathways and apoptosis leading to the cellular expression of damage-associated molecular patterns (DAMPs). The aim of our in vitro study was to investigate whether mistletoe extracts induce characteristics of immunogenic tumor cell death in cancer cell lines. Methods Three human breast cancer cell lines and one murine melanoma cell line (SKBR3, MDA-MB-231, MCF-7, and B16F10) were treated with aqueous, fermented Viscum album extract (VAE: Iscador Qu spec.) and taxol or tunicamycin as positive controls, respectively. To investigate whether VAE induces ribotoxic stress, we measured the ER stress regulators p-eIF2a, ATF4, and CHOP by Western blot. Cell surface exposure of DAMPs (calreticulin, heat shock proteins hsp70 and hsp90), apoptosis and induction of mitochondrial reactive oxygen species (ROS) were assessed by flow cytometry. HMGB1 and ATP were quantified by ELISA and chemiluminescence assay, respectively. Results Treatment with VAE resulted in phosphorylation of eIF2α in all cancer cell lines tested and increased calreticulin (CRT) exposure on the surface of pre-apoptotic SKBR3 breast cancer and B16F10 mouse melanoma cells. VAE exerted a concentration-dependent effect in all cell lines, resulting in a significantly increased exposure of three DAMPs (CRT, hsp70 and hsp90) on the surface of early apoptotic cells. Furthermore, VAE elevated mitochondrial ROS production and the release of ATP. HMGB1 release was not induced by VAE. Conclusions In this in vitro study, we demonstrated for the first time the potential of a mistletoe extract to induce surrogate markers of immunogenic cancer cell death. This is a primary step in investigating the potential of VAEs to contribute to ICD-induced tumor-specific immune activation.