Semiconductor double quantum dots (DQD) coupled to superconducting microwave resonators offer a promising platform for the detection of sing
Semiconductor double quantum dots (DQD) coupled to superconducting microwave resonators offer a promising platform for the detection of single microwave photons. In previous works, the photodetection was studied for a monochromatic source of microwave photons. Here, we theoretically analyze the photodetection of single microwave pulses. The photodetection in this case can be seen as a nonlinear filtering process of an incoming signal, the pulse, to an outgoing one, the photocurrent. This analogy to signal processing motivated the derivation of a Wigner-function formalism which provides a compelling visualization of the time and frequency properties of the photodetector for low intensities. We find a trade-off between detecting the time and the frequency of the incoming photons, in agreement with the time-energy uncertainty relation. As the intensity of the source increases, the photodetection is influenced by coherent Rabi oscillations of the DQD. Our findings give insight into the time-dependent properties of microwave photons interacting with electrons in a DQD-resonator hybrid system and provide guidance for experiments on single microwave pulse detection.
Lund University, Faculty of Science, Department of Physics, Mathematical Physics, Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Matematisk fysik, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator