Deep-learning methods using unpaired datasets hold great potential for image reconstruction, especially in biomedical imaging where obtainin
Deep-learning methods using unpaired datasets hold great potential for image reconstruction, especially in biomedical imaging where obtaining paired datasets is often difficult due to practical concerns. A recent study by Lee et al. (Nature Machine Intelligence 2023) has introduced a parameterized physical model (referred to as FMGAN) using the unpaired approach for adaptive holographic imaging, which replaces the forward generator network with a physical model parameterized on the propagation distance of the probing light. FMGAN has demonstrated its capability to reconstruct the complex phase and amplitude of objects, as well as the propagation distance, even in scenarios where the object-to-sensor distance exceeds the range of the training data. We performed additional experiments to comprehensively assess FMGAN’s capabilities and limitations. As in the original paper, we compared FMGAN to two state-of-the-art unpaired methods, CycleGAN and PhaseGAN, and evaluated their robustness and adaptability under diverse conditions. Our findings highlight FMGAN’s reproducibility and generalizability when dealing with both in-distribution and out-of-distribution data, corroborating the results reported by the original authors. We also extended FMGAN with explicit forward models describing the response of specific optical systems, which improved performance when dealing with non-perfect systems. However, we observed that FMGAN encounters difficulties when explicit forward models are unavailable. In such scenarios, PhaseGAN outperformed FMGAN.
Lund University, Faculty of Science, Department of Physics, Synchrotron Radiation Research, Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Synkrotronljusfysik, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Photon Science and Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Avancerade ljuskällor, Originator