Light microscopy has been a favorite tool of biological studies for almost a century, recently producing detailed images with exquisite mole
Light microscopy has been a favorite tool of biological studies for almost a century, recently producing detailed images with exquisite molecular specificity achieving spatial resolution at nanoscale. However, light microscopy is insufficient to provide chemical information as a standalone technique. An increasing amount of evidence demonstrates that optical photothermal infrared microspectroscopy (O-PTIR) is a valuable imaging tool that can extract chemical information to locate molecular structures at submicron resolution. To further investigate the applicability of sub-micron infrared microspectroscopy for biomedical applications, we analyzed the contribution of substrate chemistry to the infrared spectra acquired from individual neurons grown on various imaging substrates. To provide an example of correlative immunofluorescence/O-PTIR imaging, we used immunofluorescence to locate specific organelles for O-PTIR measurement, thus capturing molecular structures at the sub-cellular level directly in cells, which is not possible using traditional infrared microspectroscopy or immunofluorescence microscopy alone.
Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Medicine, Department of Experimental Medical Science, Medical Microspectroscopy, Lunds universitet, Medicinska fakulteten, Institutionen för experimentell medicinsk vetenskap, Medicinsk mikrospektroskopi, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), MultiPark: Multidisciplinary research focused on Parkinson´s disease, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), MultiPark: Multidisciplinary research focused on Parkinson´s disease, Originator, Lund University, Faculty of Medicine, Department of Experimental Medical Science, Neuroinflammation, Lunds universitet, Medicinska fakulteten, Institutionen för experimentell medicinsk vetenskap, Neuroinflammation, Originator, Lund University, Faculty of Medicine, Department of Experimental Medical Science, Experimental Dementia Research, Lunds universitet, Medicinska fakulteten, Institutionen för experimentell medicinsk vetenskap, Experimentell demensforskning, Originator, Lund University, Faculty of Science, LINXS - Institute of advanced Neutron and X-ray Science, Lunds universitet, Naturvetenskapliga fakulteten, LINXS Institute of advanced Neutron and X-ray Science, Originator