Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure disorder in which pure red blood cell aplasia is associated with physical
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure disorder in which pure red blood cell aplasia is associated with physical malformations and a predisposition to cancer. Twentyfive percent of patients with DBA have mutations in a gene encoding ribosomal protein S19 (RPS19). Our previous proof-of-concept studies demonstrated that DBA phenotype could be successfully treated using lentiviral vectors in Rps19-deficient DBA mice. In our present study, we developed a clinically applicable single gene, self-inactivating lentiviral vector, containing the human RPS19 cDNA driven by the human elongation factor 1a short promoter, which can be used for clinical gene therapy development for RPS19-deficient DBA. We examined the efficacy and safety of the vector in a Rps19-deficient DBA mouse model and in human primary RPS19-deficient CD34+ cord blood cells. We observed that transduced Rps19-deficient bone marrow cells could reconstitute mice long-term and rescue the bone marrow failure and severe anemia observed in Rps19-deficient mice, with a low risk of mutagenesis and a highly polyclonal insertion site pattern. More importantly, the vector can also rescue impaired erythroid differentiation in human primary RPS19-deficient CD34+ cord blood hematopoietic stem cells. Collectively, our results demonstrate the efficacy and safety of using a clinically applicable lentiviral vector for the successful treatment of Rps19-deficient DBA in a mouse model and in human primary CD34+ cord blood cells. These findings show that this vector can be used to develop clinical gene therapy for RPS19-deficient DBA patients.
Lund University, Faculty of Medicine, Department of Laboratory Medicine, Division of Molecular Medicine and Gene Therapy, Hematopoiesis and Gene Therapy, Lunds universitet, Medicinska fakulteten, Institutionen för laboratoriemedicin, Avdelningen för molekylärmedicin och genterapi, Hematopoes och genterapi, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), StemTherapy: National Initiative on Stem Cells for Regenerative Therapy, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), StemTherapy: National Initiative on Stem Cells for Regenerative Therapy, Originator, Lund University, Faculty of Medicine, Department of Laboratory Medicine, Division of Molecular Medicine and Gene Therapy, Stem Cells to Red Blood Cells, Lunds universitet, Medicinska fakulteten, Institutionen för laboratoriemedicin, Avdelningen för molekylärmedicin och genterapi, Stamceller till röda blodkroppar, Originator