A general entanglement generation protocol between remote stationary qubits using single-photon reflection in a photonic network is explored
A general entanglement generation protocol between remote stationary qubits using single-photon reflection in a photonic network is explored theoretically. The nodes of the network consist of single qubits that are typically represented by the spin of a color center, each localized in a separate optical cavity and linked to other nodes via photonic links such as optical fibers. We derive a model applicable to a wide range of parameters and scenarios to describe the nodes and the local spin-photon interaction accounting for the pulsed (finite-bandwidth) nature of flying single photons while optimizing the rate and fidelity. We investigate entanglement generation between remote qubits and tailor protocols to a variety of physical implementations with different properties. Of particular interest is the regime of weak coupling and low cooperativity between the spin and cavity, which is relevant in the cases of the nitrogen- and silicon-vacancy centers in diamond. We also take into account the variability of the properties between realistic (stationary) nodes.
Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), NanoLund: Centre for Nanoscience, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), NanoLund: Centre for Nanoscience, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Nanoscience and Semiconductor Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Nanovetenskap och halvledarteknologi, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator, Lund University, Faculty of Science, Department of Physics, Solid State Physics, Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Fasta tillståndets fysik, Originator