Significance The spatial distribution of the photosensitizing drug concentration is an important parameter for predicting the photodynamic t
Significance The spatial distribution of the photosensitizing drug concentration is an important parameter for predicting the photodynamic therapy (PDT) outcome. Current diffuse fluorescence tomography methods lack accuracy in quantifying drug concentration. The development of accurate methods for monitoring the temporal evolution of the drug distribution in tissue can advance the real-time light dosimetry in PDT of tumors, leading to better treatment outcomes. Aim We develop diffuse optical tomography methods based on interstitial fluorescence measurements to accurately reconstruct the spatial distribution of fluorescent photosensitizing drugs in real-time. Approach A two-stage reconstruction algorithm is proposed. The capabilities and limitations of this method are studied in various simulated scenarios. For the first time, experimental validation is conducted using the clinical system for interstitial PDT of prostate cancer on prostate tissue-mimicking phantoms with the photosensitizer verteporfin. Results The average relative error of the reconstructed fluorophore absorption was less than 10%, whereas the fluorescent inclusion reconstructed volume relative error was less than 35%. Conclusions The proposed method can be used to monitor the temporal evolution of the photosensitizing drug concentration in tumor tissue during photodynamic therapy. This is an important step forward in the development of the next generation of real-time light dosimetry algorithms for photodynamic therapy.
Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Light and Materials, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Ljus och material, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Engineering Health, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Teknik för hälsa, Originator, Lund University, Faculty of Science, Department of Physics, Atomic Physics, Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Atomfysik, Originator, Lund University, Faculty of Science, Centre for Environmental and Climate Science (CEC), Lunds universitet, Naturvetenskapliga fakulteten, Centrum för miljö- och klimatvetenskap (CEC), Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: Photon Science and Technology, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: Avancerade ljuskällor, Originator, Lund University, Profile areas and other strong research environments, Other Strong Research Environments, LUCC: Lund University Cancer Centre, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Övriga starka forskningsmiljöer, LUCC: Lunds universitets cancercentrum, Originator