2024 IEEE 20th International Conference on Automation Science and Engineering (CASE) 20th IEEE International Conference on Automation Scienc
2024 IEEE 20th International Conference on Automation Science and Engineering (CASE) 20th IEEE International Conference on Automation Science and Engineering, CASE 2024. :1815-1822
Subject Terms:
Engineering and Technology, Electrical Engineering, Electronic Engineering, Information Engineering, Robotics and automation, Teknik, Elektr
In dynamic operational environments, particularly in collaborative robotics, the inevitability of failures necessitates robust and adaptable
In dynamic operational environments, particularly in collaborative robotics, the inevitability of failures necessitates robust and adaptable recovery strategies. Traditional automated recovery strategies, while effective for predefined scenarios, often lack the flexibility required for on-the-fly task management and adaptation to expected failures. Addressing this gap, we propose a novel approach that models recovery behaviors as adaptable robotic skills, leveraging the Behavior Trees and Motion Generators (BTMG) framework for policy representation. This approach distinguishes itself by employing reinforcement learning (RL) to dynamically refine recovery behavior parameters, enabling a tailored response to a wide array of failure scenarios with minimal human intervention. We assess our methodology through a series of progressively challenging scenarios within a peg-in-a-hole task, demonstrating the approach's effectiveness in enhancing operational efficiency and task success rates in collaborative robotics settings. We validate our approach using a dual-arm KUKA robot.
Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Robotics and Semantic Systems, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Robotik och Semantiska System, Originator, Lund University, Profile areas and other strong research environments, Strategic research areas (SRA), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Strategiska forskningsområden (SFO), ELLIIT: the Linköping-Lund initiative on IT and mobile communication, Originator, Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Automatic Control, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för reglerteknik, Originator, Lund University, Faculty of Engineering, LTH, LTH Profile areas, LTH Profile Area: AI and Digitalization, Lunds universitet, Lunds Tekniska Högskola, LTH profilområden, LTH profilområde: AI och digitalisering, Originator, Lund University, Faculty of Engineering, LTH, Departments at LTH, Department of Computer Science, Lunds universitet, Lunds Tekniska Högskola, Institutioner vid LTH, Institutionen för datavetenskap, Originator, Lund University, Profile areas and other strong research environments, Lund University Profile areas, LU Profile Area: Natural and Artificial Cognition, Lunds universitet, Profilområden och andra starka forskningsmiljöer, Lunds universitets profilområden, LU profilområde: Naturlig och artificiell kognition, Originator